
MATH 151 POP QUIZ II: SOLUTIONS
REVIEW FOR CHAPTER 10

Find the following limits.

Write • or - •  when appropriate. If a limit does not exist, and • and - •  are
inappropriate, write “DNE” (Does Not Exist).
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As x approaches 3, both the numerator and the denominator approach 0. We have the

indeterminate form 
0
0

 at x = 3. (Indeterminate forms require further analysis on our part.)

The “Factoring and Canceling” trick works here.
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We can cancel the  factors,  because we can

assume that  if we are considering a limit as

 approaches 3.

We can plug in  now.

Note: The graph of f x
x

x
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-
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 looks like the graph of g x x( ) = + 3, except that there

is a removable discontinuity at x = 3 (note that  f  is undefined there).
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Again, we have the indeterminate form 
0
0

. We will do some preliminary manipulation of

the given expression; you sometimes have to do this when trig expressions are involved.
This time, we will “Rationalize the Numerator.”
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DNE, because the radicand x - 6 stays negative as x approaches 6 from the left (i.e.,
through lower numbers; consider 5.9, 5.99, 5.999, …), and x - 6  does not evaluate as a
real number. It is true that the right-hand limit is 0: lim
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6  DNE. Notice that plugging in x = 6 actually doesn’t work here.
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Here, we have the indeterminate form 
•
•

.

We have a rational expression written as a quotient of polynomials, and we are
investigating the “long-term behavior” of this function (i.e., the limit as x approaches •
or - •). Let’s divide the numerator and the denominator by the highest power of x that
appears in the denominator.
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DNE, because the left-hand and right-hand limits do not match.

5-7 Note) Here is the graph of f x
x

x
( ) = - 3

:
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Plugging in x = 3 works, because the function f x
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 is continuous (“unbroken”)

at x = 3. (Limits are used to define continuity, but we get the idea….)
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(The denominator is a square; it stays positive for all x π 3.)

Contrast #10 with #7.
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(sin x is continuous at 
p
6

, so plugging in 
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 works.)
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DNE, because sin x does not approach a single real number as x Æ •.

f x x( ) = sin
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It may help to graph the arcsin (or “inverse sine”) function.

Left figure: We start with the piece of the sin function from x = -
p
2

 to x =
p
2

.

Right figure: Switch x- and y-coordinates to get the graph of the arcsin function.
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The proof for this is on pp.119-120 in the textbook (don’t worry about the proof).
This statement is used to help show that D x xx sin cos( ) =  and D x xx cos sin( ) = - .
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We can use a modified version (for the case x Æ •) of the Sandwich or
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(sin x is bounded between –1 and 1, but x explodes.)

14-15 Note) Here is the graph of f x
x

x
( ) = sin

:
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Graph of f x x( ) = 2 :
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