MATH 151 POP QUIZ II: SOLUTIONS

REVIEW FOR CHAPTER 10

Find the following limits.

Write ∞ or $-\infty$ when appropriate. If a limit does not exist, and ∞ and $-\infty$ are inappropriate, write "DNE" (Does Not Exist).

1)
$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3} \xrightarrow{\longrightarrow 0}$$

As x approaches 3, both the numerator and the denominator approach 0. We have the indeterminate form $\frac{0}{0}$ at x = 3. (Indeterminate forms require further analysis on our part.) The "Factoring and Canceling" trick works here.

$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} \frac{(x + 3)(x - 3)}{x - 3}$$
We can cancel the $(x - 3)$ factors, because we can assume that $x \ne 3$ if we are considering a limit as x approaches 3.
$$= \lim_{x \to 3} (x + 3)$$
We can plug in $x = 3$ now.
$$= 3 + 3$$

$$= 6$$

Note: The graph of $f(x) = \frac{x^2 - 9}{x - 3}$ looks like the graph of g(x) = x + 3, except that there is a removable discontinuity at x = 3 (note that f is undefined there).

2)
$$\lim_{x \to 0} \frac{\sqrt{9-x}-3}{x} \xrightarrow{\rightarrow 0}$$

Again, we have the indeterminate form $\frac{0}{0}$. We will do some preliminary manipulation of the given expression; you sometimes have to do this when trig expressions are involved. This time, we will "Rationalize the Numerator."

$$\lim_{x \to 0} \frac{\sqrt{9-x} - 3}{x} = \lim_{x \to 0} \frac{\left(\sqrt{9-x} - 3\right)}{(x)} \bullet \frac{\left(\sqrt{9-x} + 3\right)}{\left(\sqrt{9-x} + 3\right)}$$

$$= \lim_{x \to 0} \frac{\left(\sqrt{9-x}\right)^2 - (3)^2}{x\left(\sqrt{9-x} + 3\right)}$$

$$= \lim_{x \to 0} \frac{\frac{(9-x) - 9}{x\left(\sqrt{9-x} + 3\right)}}{\frac{-x}{x\left(\sqrt{9-x} + 3\right)}}$$

$$= \lim_{x \to 0} \frac{\frac{-1}{-x}}{\frac{x}{y}\left(\sqrt{9-x} + 3\right)}$$

$$= \lim_{x \to 0} \frac{-1}{\sqrt{9-x} + 3}$$

$$= \frac{-1}{\sqrt{9-(0)} + 3}$$

$$= -\frac{1}{6}$$

3)
$$\lim_{x \to 6} \sqrt{x-6}$$

DNE, because the radicand x-6 stays negative as x approaches 6 from the left (i.e., through lower numbers; consider 5.9, 5.99, 5.999, ...), and $\sqrt{x-6}$ does not evaluate as a real number. It is true that the right-hand limit is 0: $\lim_{x\to 6^+} \sqrt{x-6} = 0$, but the left-hand limit $\lim_{x\to 6^-} \sqrt{x-6}$ DNE. Notice that plugging in x=6 actually doesn't work here.

4)
$$\lim_{x \to \infty} \frac{2x^3 - x + 3}{4x^2 + 1} \xrightarrow{\infty} \infty$$

Here, we have the indeterminate form $\frac{\infty}{\infty}$.

We have a rational expression written as a quotient of polynomials, and we are investigating the "long-term behavior" of this function (i.e., the limit as x approaches ∞ or $-\infty$). Let's divide the numerator and the denominator by the highest power of x that appears in the denominator.

$$\lim_{x \to \infty} \frac{2x^3 - x + 3}{4x^2 + 1} = \lim_{x \to \infty} \frac{\frac{2x^3}{x^2} - \frac{x}{x^2} + \frac{3}{x^2}}{\frac{4x^2}{x^2} + \frac{1}{x^2}}$$

$$= \lim_{x \to \infty} \frac{\frac{2x^3}{x^2} - \frac{x}{x^2} + \frac{3}{x^2}}{\frac{2x}{x^2} - \frac{1}{x} + \frac{3}{x^2}} \xrightarrow{\to \infty}$$

$$= \lim_{x \to \infty} \frac{\frac{2x^3}{x^2} - \frac{x}{x^2} + \frac{3}{x^2}}{\frac{1}{x^2} + \frac{3}{x^2}} \xrightarrow{\to \infty}$$

5)
$$\lim_{x \to 3^{+}} \frac{\overrightarrow{x}}{\underbrace{x - 3}_{\text{ostive}}} = \infty$$

6)
$$\lim_{x \to 3^{-}} \frac{\overrightarrow{x}}{\cancel{x} - 3} = -\infty$$

$$\underset{\text{(stays negative)}}{\overset{\text{(stays)}}{\xrightarrow{\text{(stays)}}}} = -\infty$$

- 7) $\lim_{x\to 3} \frac{x}{x-3}$ DNE, because the left-hand and right-hand limits do not match.
- 5-7 Note) Here is the graph of $f(x) = \frac{x}{x-3}$:

8)
$$\lim_{x \to 3} \frac{x^2 + 5}{x - 1} = \frac{(3)^2 + 5}{(3) - 1} = \frac{14}{2} = 7$$

Plugging in x = 3 works, because the function $f(x) = \frac{x^2 + 5}{x - 1}$ is continuous ("unbroken") at x = 3. (Limits are used to define continuity, but we get the idea....)

9)
$$\lim_{x \to -3^{-}} \frac{1}{x^2 + 3x}$$

$$\lim_{x \to -3^{-}} \frac{1}{x^{2} + 3x} = \lim_{x \to -3^{-}} \frac{1}{\underbrace{x}_{\to -3} \underbrace{(x+3)}_{\to 0^{-}}} \xrightarrow{\to 0^{+}}$$

10)
$$\lim_{x \to 3} \frac{\overbrace{x+4}^{7}}{\underbrace{(x-3)^{2}}_{0+}} = \infty \quad \text{(The denominator is a square; it stays positive for all } x \neq 3.\text{)}$$

Contrast #10 with #7.

11)
$$\lim_{x \to \frac{\pi}{6}} \sin x = \sin\left(\frac{\pi}{6}\right) = \frac{1}{2} \quad (\sin x \text{ is continuous at } \frac{\pi}{6}, \text{ so plugging in } \frac{\pi}{6} \text{ works.})$$

12) $\lim_{x\to\infty} \sin x$ DNE, because $\sin x$ does not approach a single real number as $x\to\infty$.

$$f(x) = \sin x$$

13)
$$\lim_{x \to 1^{-}} \sin^{-1} x = \frac{\pi}{2}$$

It may help to graph the arcsin (or "inverse sine") function.

Left figure: We start with the piece of the sin function from $x = -\frac{\pi}{2}$ to $x = \frac{\pi}{2}$.

Right figure: Switch x- and y-coordinates to get the graph of the arcsin function.

$$14) \qquad \lim_{x \to 0} \frac{\sin x}{x} = 1$$

The proof for this is on pp.119-120 in the textbook (don't worry about the proof). This statement is used to help show that $D_x(\sin x) = \cos x$ and $D_x(\cos x) = -\sin x$.

$$\lim_{x \to \infty} \frac{\sin x}{x} = 0$$

We can use a modified version (for the case $x \to \infty$) of the Sandwich or "Squeeze" Theorem on p.64. Observe that $-1 \le \sin x \le 1$ for all real x. For all x > 0,

$$\frac{-1}{\underbrace{x}} \le \underbrace{\frac{\sin x}{x}}_{So, \to 0} \le \frac{1}{\underbrace{x}}_{To} \quad \text{(sin } x \text{ is bounded between } -1 \text{ and } 1, \text{ but } x \text{ explodes.)}$$

14-15 Note) Here is the graph of $f(x) = \frac{\sin x}{x}$:

16)
$$\lim_{x \to \infty} 2^x = \infty$$
 (2^x is a function that represents exponential growth.)

Graph of $f(x) = 2^x$:

17)
$$\lim_{x \to \infty} 2^{-x} = \lim_{x \to \infty} \frac{1}{2^{x}} = 0$$

18)
$$\lim_{x \to \infty} \left(\frac{1}{2}\right)^x = \lim_{x \to \infty} \left(2^{-1}\right)^x = \lim_{x \to \infty} 2^{-x} = 0$$
, or $\lim_{x \to \infty} \left(\frac{1}{2}\right)^x = \lim_{x \to \infty} \left(\frac{1}{2^x}\right) = 0$ (See #17.)

 $\left(\frac{1}{2}\right)^x$ is a function that represents exponential decay.

Graph of
$$f(x) = \left(\frac{1}{2}\right)^x$$
:

19)
$$\lim_{x \to \infty} \frac{1}{\frac{1}{x}} = \lim_{x \to \infty} x = \infty$$

$$20) \qquad \lim_{x \to \infty} \ln x = \infty$$

$$\lim_{x\to 0^+} \ln x = -\infty$$