## MATH 151 POP QUIZ II: SOLUTIONS <br> REVIEW FOR CHAPTER 10

## Find the following limits.

Write $\infty$ or $-\infty$ when appropriate. If a limit does not exist, and $\infty$ and $-\infty$ are inappropriate, write "DNE" (Does Not Exist).

1) $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3} \underset{\rightarrow 0}{\rightarrow 0}$

As $x$ approaches 3, both the numerator and the denominator approach 0 . We have the indeterminate form $\frac{0}{0}$ at $x=3$. (Indeterminate forms require further analysis on our part.) The "Factoring and Canceling" trick works here.

$$
\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}=\lim _{x \rightarrow 3} \frac{(x+3)(x-3)}{x-3}
$$

We can cancel the $(x-3)$ factors, because we can assume that $x \neq 3$ if we are considering a limit as
$x$ approaches 3 .
$=\lim _{x \rightarrow 3}(x+3)$
We can plug in $x=3$ now.

$$
\begin{aligned}
& =3+3 \\
& =6
\end{aligned}
$$

Note: The graph of $f(x)=\frac{x^{2}-9}{x-3}$ looks like the graph of $g(x)=x+3$, except that there is a removable discontinuity at $x=3$ (note that $f$ is undefined there).

2) $\lim _{x \rightarrow 0} \frac{\sqrt{9-x}-3}{x} \underset{\rightarrow 0}{\rightarrow 0}$

Again, we have the indeterminate form $\frac{0}{0}$. We will do some preliminary manipulation of the given expression; you sometimes have to do this when trig expressions are involved. This time, we will "Rationalize the Numerator."

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sqrt{9-x}-3}{x} & =\lim _{x \rightarrow 0} \frac{(\sqrt{9-x}-3)}{(x)} \bullet \frac{(\sqrt{9-x}+3)}{(\sqrt{9-x}+3)} \\
& =\lim _{x \rightarrow 0} \frac{(\sqrt{9-x})^{2}-(3)^{2}}{x(\sqrt{9-x}+3)} \\
& =\lim _{x \rightarrow 0} \frac{(9-x)-9}{x(\sqrt{9-x}+3)} \\
& =\lim _{x \rightarrow 0} \frac{\overbrace{-x}^{-1}}{\underbrace{x(\sqrt{9-x}+3)}_{1}} \\
& =\lim _{x \rightarrow 0} \frac{-1}{\sqrt{9-x}+3} \\
& =\frac{-1}{\sqrt{9-(0)}+3} \\
& =-\frac{1}{6}
\end{aligned}
$$

3) $\lim _{x \rightarrow 6} \sqrt{x-6}$

DNE, because the radicand $x-6$ stays negative as $x$ approaches 6 from the left (i.e., through lower numbers; consider $5.9,5.99,5.999, \ldots$ ), and $\sqrt{x-6}$ does not evaluate as a real number. It is true that the right-hand limit is $0: \lim _{x \rightarrow 6^{+}} \sqrt{x-6}=0$, but the left-hand limit $\lim _{x \rightarrow 6^{-}} \sqrt{x-6}$ DNE. Notice that plugging in $x=6$ actually doesn't work here.

4) $\lim _{x \rightarrow \infty} \frac{2 x^{3}-x+3}{4 x^{2}+1} \underset{\rightarrow \infty}{\rightarrow \infty}$

Here, we have the indeterminate form $\frac{\infty}{\infty}$.
We have a rational expression written as a quotient of polynomials, and we are investigating the "long-term behavior" of this function (i.e., the limit as $x$ approaches $\infty$ or $-\infty$ ). Let's divide the numerator and the denominator by the highest power of $x$ that appears in the denominator.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{2 x^{3}-x+3}{4 x^{2}+1} & =\lim _{x \rightarrow \infty} \frac{\frac{2 x^{3}}{x^{2}}-\frac{x}{x^{2}}+\frac{3}{x^{2}}}{\frac{4 x^{2}}{x^{2}}+\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow \infty} \frac{\overbrace{2 x}^{\infty}-\overbrace{\frac{1}{x}}^{0}+\overbrace{\frac{3}{x^{2}}}^{4+\underbrace{\frac{1}{x^{2}}}_{\rightarrow 0}}}{\frac{\rightarrow \infty}{\rightarrow 4}} \\
& =\infty
\end{aligned}
$$

5) $\lim _{x \rightarrow 3^{+}} \frac{\overrightarrow{3}^{3}}{\substack{\begin{subarray}{c}{\rightarrow 0^{+} \\ \text {(stays } \\ \text { positive) }} }} \end{subarray} \frac{x-3}{x-2}}=\infty$

6) $\lim _{x \rightarrow 3} \frac{x}{x-3} \quad$ DNE, because the left-hand and right-hand limits do not match.

5-7 Note) Here is the graph of $f(x)=\frac{x}{x-3}$ :

8) $\lim _{x \rightarrow 3} \frac{x^{2}+5}{x-1}=\frac{(3)^{2}+5}{(3)-1}=\frac{14}{2}=7$

Plugging in $x=3$ works, because the function $f(x)=\frac{x^{2}+5}{x-1}$ is continuous ("unbroken") at $x=3$. (Limits are used to define continuity, but we get the idea....)

9) $\lim _{x \rightarrow-3^{-}} \frac{1}{x^{2}+3 x}$

$$
\begin{aligned}
\lim _{x \rightarrow-3^{-}} \frac{1}{x^{2}+3 x} & =\lim _{x \rightarrow-3^{-}} \frac{1}{\underset{\rightarrow-3}{x} \underbrace{(x+3)}_{\rightarrow 0^{-}}} \xrightarrow{\rightarrow 1} \underset{\rightarrow 0^{+}}{\rightarrow 1} \\
& =\infty
\end{aligned}
$$

10) $\lim _{x \rightarrow 3} \underbrace{\frac{\vec{x}^{7}}{(x+4}}_{0^{+}}=\infty \quad$ (The denominator is a
11) $\quad \lim _{x \rightarrow \frac{\pi}{6}} \sin x=\sin \left(\frac{\pi}{6}\right)=\frac{1}{2} \quad\left(\sin x\right.$ is continuous at $\frac{\pi}{6}$, so plugging in $\frac{\pi}{6}$ works.)
12) $\lim _{x \rightarrow \infty} \sin x \quad$ DNE, because $\sin x$ does not approach a single real number as $x \rightarrow \infty$.


$$
f(x)=\sin x
$$

13) $\lim _{x \rightarrow 1^{-}} \sin ^{-1} x=\frac{\pi}{2}$

It may help to graph the arcsin (or "inverse sine") function.
Left figure: We start with the piece of the sin function from $x=-\frac{\pi}{2}$ to $x=\frac{\pi}{2}$.
Right figure: Switch $x$ - and $y$-coordinates to get the graph of the arcsin function.


14) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$

The proof for this is on pp.119-120 in the textbook (don't worry about the proof).
This statement is used to help show that $D_{x}(\sin x)=\cos x$ and $D_{x}(\cos x)=-\sin x$.
15) $\lim _{x \rightarrow \infty} \frac{\sin x}{x}=0$

We can use a modified version (for the case $x \rightarrow \infty$ ) of the Sandwich or
"Squeeze" Theorem on p.64. Observe that $-1 \leq \sin x \leq 1$ for all real $x$. For all $x>0$,

$$
\underbrace{\frac{-1}{x}}_{\rightarrow 0} \leq \underbrace{\frac{\sin x}{x}}_{\substack{\text { So, } \\ \rightarrow 0}} \leq \underbrace{\frac{1}{x}}_{\rightarrow 0} \quad \text { (sin } x \text { is bounded between }-1 \text { and } 1 \text {, but } x \text { explodes.) }
$$

14-15 Note) Here is the graph of $f(x)=\frac{\sin x}{x}$ :

16) $\lim _{x \rightarrow \infty} 2^{x}=\infty \quad$ (2 $2^{x}$ is a function that represents exponential growth.)

Graph of $f(x)=2^{x}$ :

17) $\lim _{x \rightarrow \infty} 2^{-x}=\lim _{x \rightarrow \infty} \frac{1}{{\underset{\rightarrow \infty}{x}}_{2^{x}}}=0$
18) $\lim _{x \rightarrow \infty}\left(\frac{1}{2}\right)^{x}=\lim _{x \rightarrow \infty}\left(2^{-1}\right)^{x}=\lim _{x \rightarrow \infty} 2^{-x}=0$, or $\lim _{x \rightarrow \infty}\left(\frac{1}{2}\right)^{x}=\lim _{x \rightarrow \infty}\left(\frac{1}{2^{x}}\right)=0 \quad$ (See \#17.)
$\left(\frac{1}{2}\right)^{x}$ is a function that represents exponential decay.
Graph of $f(x)=\left(\frac{1}{2}\right)^{x}$ :

19) $\lim _{x \rightarrow \infty} \frac{1}{\frac{1}{x}}=\lim _{x \rightarrow \infty} x=\infty$
20) $\lim _{x \rightarrow \infty} \ln x=\infty$
21) $\lim _{x \rightarrow 0^{+}} \ln x=-\infty$


