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MATH 151 POP QUIZ II: SOLUTIONS

REVIEW FOR CHAPTER 10

the following limits.

Write oo or —eo when appropriate. If a limit does not exist, and o and —co are
inappropriate, write “DNE” (Does Not Exist).
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As x approaches 3, both the numerator and the denominator approach 0. We have the
indeterminate form 0 at x = 3. (Indeterminate forms require further analysis on our part.)

The “Factoring and Canceling” trick works here.

lim X -9 ~ lim (xr+3)(xr-3)
-3 x—=3 x—3 xr—3

We can cancel the (x— 3) factors, because we can

assume that x # 3 if we are considering a limit as

x approaches 3.

=lim (x+3)

x—3

We can plug in x =3 now.
=3+3
=6
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Note: The graph of f(x)= al
x

3 looks like the graph of g(x)= x + 3, except that there

is a removable discontinuity at x = 3 (note that f is undefined there).
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Again, we have the indeterminate form 0 We will do some preliminary manipulation of

the given expression; you sometimes have to do this when trig expressions are involved.
This time, we will “Rationalize the Numerator.”
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3) lim Vx=6

DNE, because the radicand x — 6 stays negative as x approaches 6 from the left (i.e.,
through lower numbers; consider 5.9, 5.99, 5.999, ...), and v x —6 does not evaluate as a
real number. It is true that the right-hand limit is 0: lim +vx—6 =0, but the left-hand

x—6"

limit lim +x—6 DNE. Notice that plugging in x = 6 actually doesn’t work here.

x—6"




3 oo
4) lim 2x 2x+3 -
xme 4x 4] oo

oo
Here, we have the indeterminate form —.

We have a rational expression written as a quotient of polynomials, and we are
investigating the “long-term behavior” of this function (i.e., the limit as x approaches oo
or —oo). Let’s divide the numerator and the denominator by the highest power of x that
appears in the denominator.
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7) lin% 3 DNE, because the left-hand and right-hand limits do not match.
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¥
|
I L
1 | .
|3 6
|

x—+3" x->3*



=

. x2+5_(3%+5 14
L R Sl N )

2

. . 5. .
Plugging in x = 3 works, because the function f(x)= al is continuous (“unbroken”)

at x = 3. (Limits are used to define continuity, but we get the idea....)
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10)  lim ———— =oo (The denominator is a square; it stays positive for all x # 3.)
x—3 (X _ 3)
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Contrast #10 with #7.
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11) lim sinx=sin| — |== (sinx is continuous at —, so plugging in — works.)
H% 6) 2 6 6

12) lim sinx DNE, because sin x does not approach a single real number as x — oo,
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13) xlg{; sin— x =7

It may help to graph the arcsin (or “inverse sine”) function.
Left figure: We start with the piece of the sin function from x = ~3 to x=—.
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Right figure: Switch x- and y-coordinates to get the graph of the arcsin function.

¥
Ll
z

1
b2 |
b2| o

14)  1lim 22X =y
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The proof for this is on pp.119-120 in the textbook (don’t worry about the proof).
This statement is used to help show that D, (sinx)=cosx and D,(cosx)=—sinx.

15)  lim 22t =g

x> X

We can use a modified version (for the case x — o) of the Sandwich or
“Squeeze” Theorem on p.64. Observe that —1 < sinx <1 for all real x. For all

x>0,
-1 sin x 1 ..
— < < —  (sinx is bounded between —1 and 1, but x explodes.)
ESNE IS
-0 So, -0
-0

_sinx

14-15 Note) Here is the graph of f(x)= =




16) )}1_)1{10 2% =00 (2" is a function that represents exponential growth.)

Graph of f(x)=2":

17)  lim 277 = lim —>—=0
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18) lim ' fim (2-1)x ~ lim 2 =0, or lim |~ —im (L) =0 (See #17.)
x—oeo (2 X—> o0 X—> o0 ’ x—oo (D x—oo (¥ :
(%) is a function that represents exponential decay.
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Graph of f(x)= (E) :
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20) lim Inx=-co
X—> o0

21) lim Inx=-oo
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