\qquad
QUIZ 4 (SECTIONS 11.6-11.8)
MATH 151 - SPRING 2004 - KUNIYUKI

PART 1: GRADED OUT OF 80 POINTS; SCORE CUT IN HALF (80 $\boldsymbol{\rightarrow}$ 40)
PART 2: 65 POINTS
TOTAL ON PARTS 1 AND 2: 105 POINTS, BUT 100 POINTS = 100\%

(PART 1)

No notes, books, or calculators!

Fill in the table below. You may use the back for [ungraded] scratch work.
Simplify where appropriate, but you do not have to compute factorials.

$f(x)$	First four nonzero terms of the Maclaurin series	Summation notation form for the Maclaurin series	Interval of convergence, I, for the Maclaurin series
$\sin x$			
$\cos x$			
$\sinh x$			
$\cosh x$			
$\tan ^{-1} x$			
e^{x}			
$\ln (1+x)$			
$\frac{1}{1-x}$			

\qquad

QUIZ 4 (SECTIONS 11.6-11.8)
 MATH 151 - SPRING 2004 - KUNIYUKI

PART 1: GRADED OUT OF 80 POINTS; SCORE CUT IN HALF ($80 \rightarrow 40$)
PART 2: 65 POINTS
TOTAL ON PARTS 1 AND 2: 105 POINTS, BUT 100 POINTS = 100\%

(PART 2)

Show all work, simplify as appropriate, and use "good form and procedure" (as in class). Box in your final answers!
No notes or books allowed. A scientific calculator is allowed.

1) Consider the series $\sum_{n=1}^{\infty} \frac{5 n}{3^{n}}(x+2)^{n}$. (27 points total)
a) What is the center of this series?
b) Find the interval of convergence. Show all work, as in class!
2) Use summation notation to answer the following. (10 points total)
a) Find a power series representation for $f(x)=\frac{1}{2+9 x},|x|<\frac{2}{9}$.
b) Use part a) to find a power series representation for $D_{x}\left(\frac{1}{2+9 x}\right),|x|<\frac{2}{9}$.
3) Evaluate $\int x^{3} \arctan x^{5} d x,|x|<1$. Hint: The Maclaurin series for $\arctan x$ is $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$. Just use series; don't use integration by parts. (12 points)
4) Find the first four terms of the Taylor series for $f(x)=4^{x}$ at $c=2$. (Assume that such a series exists.) (16 points)
