QUIZ 4 (SECTIONS 11.6-11.8) SOLUTIONS

MATH 151 – SPRING 2004 – KUNIYUKI

PART 1: GRADED OUT OF 80 POINTS; SCORE CUT IN HALF (80 → 40)

PART 2: 65 POINTS

TOTAL ON PARTS 1 AND 2: 105 POINTS, BUT 100 POINTS = 100%

(PART 1)

No notes, books, or calculators!

Fill in the table below. You may use the back for [ungraded] scratch work. Simplify where appropriate, but you do <u>not</u> have to compute factorials.

f(x)	First four nonzero terms of the Maclaurin series	Summation notation form for the Maclaurin series	Interval of convergence, <i>I</i> , for the Maclaurin series
$\sin x$	$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$	$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$	$\left(-\infty,\infty\right)$
$\cos x$	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$	$\sum_{n=0}^{\infty} \left(-1\right)^n \frac{x^{2n}}{(2n)!}$	$(-\infty,\infty)$
sinh x	$x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots$	$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$	$\left(-\infty,\infty\right)$
$\cosh x$	$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots$	$\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$	$(-\infty,\infty)$
$\tan^{-1} x$	$x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots$	$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$	[-1,1]
e^x	$1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$	$\sum_{n=0}^{\infty} \frac{x^n}{n!}$	$\left(-\infty,\infty\right)$
$\ln(1+x)$	$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$	$\sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}, \text{ or }$ $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$	(-1,1]
$\frac{1}{1-x}$	$1 + x + x^2 + x^3 + \dots$	$\sum_{n=0}^{\infty} x^n$	(-1,1)

(PART 2)

Show all work, simplify as appropriate, and use "good form and procedure" (as in class).

Box in your final answers!

No notes or books allowed. A scientific calculator is allowed.

- 1) Consider the series $\sum_{n=1}^{\infty} \frac{5n}{3^n} (x+2)^n$. (27 points total)
 - a) What is the center of this series? [-2] It is c in the form $\sum a_n(x-c)^n$.
 - b) Find the interval of convergence. Show all work, as in class!

Let
$$u_n = \frac{5n}{3^n} (x+2)^n$$
.

$$L = \lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right|$$

$$= \lim_{n \to \infty} \left| \frac{\frac{5(n+1)}{3^{n+1}} (x+2)^{n+1}}{\frac{5n}{3^n} (x+2)^n} \right|$$

$$= \lim_{n \to \infty} \left| \frac{\frac{5(n+1)}{3^{n+1}} \cdot \frac{3^n}{5n} (x+2)}{\frac{3^n}{3^{n+1}} (x+2)} \right|$$

$$= \lim_{n \to \infty} \left| \frac{\frac{5n+5}{5n}}{\frac{5n}{3^{n+1}}} \cdot \frac{3^n}{3^{n+1}} (x+2) \right|$$

$$= \frac{1}{3} |x+2|$$

We know the series converges when L < 1 (and diverges when L > 1).

$$\left| \frac{1}{3} \left| x + 2 \right| < 1 \right|$$

$$\left| x + 2 \right| < 3$$

Solve the absolute value inequality:

$$-3 < x+2 < 3$$
 $-3-2 < x < 3-2$
 $-5 < x < 1$

We know that the series converges for these values of x.

Check x = -5:

$$\sum_{n=1}^{\infty} \frac{5n}{3^n} (x+2)^n = \sum_{n=1}^{\infty} \frac{5n}{3^n} (-5+2)^n$$

$$= \sum_{n=1}^{\infty} \frac{5n}{3^n} (-3)^n$$

$$= \sum_{n=1}^{\infty} \frac{5n}{3^n} (-1)^n \cdot 3^n$$

$$= \sum_{n=1}^{\infty} (-1)^n 5n$$

This series diverges by the *n*th-Term Test for Divergence, because as $n \to \infty$, $5n \to \infty$ and $(-1)^n 5n$ has a DNE limit.

Check x = 1:

$$\sum_{n=1}^{\infty} \frac{5n}{3^n} (x+2)^n = \sum_{n=1}^{\infty} \frac{5n}{3^n} (1+2)^n$$
$$= \sum_{n=1}^{\infty} \frac{5n}{3^n} (3)^n$$
$$= \sum_{n=1}^{\infty} 5n$$

This series diverges by the *n*th-Term Test for Divergence, because as $n \to \infty$, $5n \to \infty$.

Answer: I = (-5, 1)

- 2) Use summation notation to answer the following. (10 points total)
 - a) Find a power series representation for $f(x) = \frac{1}{2+9x}$, $|x| < \frac{2}{9}$.

Use the Geometric Template.

$$\frac{1}{2+9x} = \frac{1}{2} \cdot \frac{1}{1+\frac{9}{2}x}$$

$$= \frac{1}{2} \cdot \frac{1}{1-\left(-\frac{9}{2}x\right)}$$

$$= \frac{1}{2} \cdot \sum_{n=0}^{\infty} \left(-\frac{9}{2}x\right)^{n} , \left|-\frac{9}{2}x\right| < 1$$

$$= \frac{1}{2} \cdot \sum_{n=0}^{\infty} (-1)^{n} \left(\frac{9}{2}\right)^{n} x^{n} , \frac{9}{2} \left|x\right| < 1$$

$$= \left[\sum_{n=0}^{\infty} (-1)^{n} \frac{9^{n}}{2^{n+1}} x^{n} , \left|x\right| < \frac{2}{9}\right]$$

b) Use part a) to find a power series representation for $D_x\left(\frac{1}{2+9x}\right)$, $\left|x\right| < \frac{2}{9}$.

For
$$|x| < \frac{2}{9}$$
,

$$D_{x}\left(\frac{1}{2+9x}\right) = D_{x}\left[\sum_{n=0}^{\infty} (-1)^{n} \frac{9^{n}}{2^{n+1}} x^{n}\right]$$

$$= \sum_{n=0}^{\infty} D_{x}\left[(-1)^{n} \frac{9^{n}}{2^{n+1}} x^{n}\right]$$

$$= \sum_{n=0}^{\infty} (-1)^{n} \frac{9^{n}}{2^{n+1}} \cdot D_{x}\left[x^{n}\right]$$

$$= \sum_{n=1}^{\infty} (-1)^{n} \frac{9^{n}}{2^{n+1}} \cdot nx^{n-1} \quad \text{or} \quad \sum_{n=1}^{\infty} (-1)^{n} \frac{n9^{n}}{2^{n+1}} x^{n-1}$$

<u>Note</u>: The n = 0 term in the series you're differentiating is a constant, so its derivative is 0.

3) Evaluate $\int x^3 \arctan x^5 dx$, |x| < 1. Hint: The Maclaurin series for $\arctan x$ is $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$. Just use series; don't use integration by parts. (12 points)

$$\arctan x^5 = \sum_{n=0}^{\infty} (-1)^n \frac{\left(x^5\right)^{2n+1}}{2n+1}$$
$$= \sum_{n=0}^{\infty} (-1)^n \frac{x^{10n+5}}{2n+1}$$

$$x^{3} \arctan x^{5} = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{3} x^{10n+5}}{2n+1}$$
$$= \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{10n+8}}{2n+1}$$

$$\int x^{3} \arctan x^{5} dx = \int \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{10n+8}}{2n+1} dx$$

$$= \sum_{n=0}^{\infty} \int (-1)^{n} \frac{x^{10n+8}}{2n+1} dx$$

$$= \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{10n+9}}{(2n+1)(10n+9)} + C$$

4) Find the first four terms of the Taylor series for $f(x) = 4^x$ at c = 2. (Assume that such a series exists.) (16 points)

$$f(x) = 4^{x}$$

$$f(2) = 4^{2}$$

$$= 16$$

$$f'(x) = 4^{x} \ln 4$$

$$f''(2) = 4^{2} \ln 4$$

$$= 16 \ln 4$$

$$f'''(x) = 4^{x} (\ln 4)^{2}$$

$$f''''(x) = 4^{x} (\ln 4)^{3}$$

$$f''''(2) = 4^{2} (\ln 4)^{2} = 16 (\ln 4)^{2}$$

$$f''''(2) = 4^{2} (\ln 4)^{3} = 16 (\ln 4)^{3}$$

Taylor series at c = 2:

$$f(2) + f'(2)(x-2) + \frac{f''(2)}{2!}(x-2)^2 + \frac{f'''(2)}{3!}(x-2)^3 + \dots$$

$$= 16 + (16\ln 4)(x-2) + \frac{16(\ln 4)^2}{2}(x-2)^2 + \frac{16(\ln 4)^3}{6}(x-2)^3 + \dots$$

$$= \left[16 + (16\ln 4)(x-2) + 8(\ln 4)^2(x-2)^2 + \frac{8}{3}(\ln 4)^3(x-2)^3 + \dots\right]$$