\qquad

QUIZ 2

SECTIONS 1.4-1.7: BASIC STRUCTURES

1) Let T be the set $\{x \mid x$ is a prime number between 2 and 20 , inclusive $\}$. Remember that a prime number is an integer greater than 1 that is divisible by no positive integer other than 1 and itself. (4 points)
a) Write down the elements of T.
b) What is the cardinality of T (denoted "|T|")?
2) Let S be the set $\{\mathrm{Al}$, George, Pat, Ralph $\}$. (10 points; 2 points each)
a) True or False: $\varnothing \in S$ \qquad
b) True or False: $\varnothing \subseteq S$ \qquad
c) Let $P(S)$ be the power set of S. What is $|P(S)|$?
d) True or False: $\varnothing \in P(S)$ \qquad
e) True or False: $\varnothing \subseteq P(S)$

3) If the cardinality of the set A is m and the cardinality of the set B is n, where m and n are both nonnegative integers, what is the cardinality of $P(A \times B)$, the power set of $A \times B$, in terms of m and n ? (6 points)
4) Let the universal set U be $\{x \mid x \in \mathbf{Z}$ and $1 \leq x \leq 10\}$. Let A_{1} be the set $\{1,2,3,4,5\}$.
Let A_{2} be the set $\{2,4,6,8,10\}$.
Let A_{3} be the set $\{1,2,10\}$.

For each of a) through e), write down the elements of the set. (20 points; 4 points each)
a) $\quad A_{1}-A_{2}$
b) $\overline{A_{2}}$
c) $A_{3} \cup \varnothing$
d) $\bigcup_{i=1}^{3} A_{i}$
e) $\quad \bigcap_{i=1}^{3} A_{i}$
5) Let A and B be subsets of some universal set U. (25 points total)
a) Use the basic set identities to prove

$$
\overline{A \cap(B \cup \bar{A})}=\bar{A} \cup \bar{B}
$$

(Hint: It's easier to use a Distributive Law first.)
For full credit, show all steps! (15 points)
b) Simplify $\overline{(A \cup A) \cap \bar{A}}$. Your answer will be one of the following:

$$
U, A, \bar{A}, \text { or } \varnothing
$$

For full credit, show all steps! (10 points)
6) (9 points total; 3 points each)

Let A be the set $\{1,2,3,4\}$.
Let B be the set $\{a, b, c, d, e\}$.
Let the function $f: A \rightarrow B$ be defined as follows:

$$
\begin{aligned}
& f(1)=c \\
& f(2)=b \\
& f(3)=a \\
& f(4)=e
\end{aligned}
$$

a) Yes or No: Is f a one-to-one function? \qquad
b) Yes or No: Is f an onto function? \qquad
c) Yes or No: Is f an invertible function? \qquad
7) (14 points total)

Let S be the set $\{x \mid x \in \mathbf{Z}$ and $-2 \leq x \leq 4\}$.
Let the function $f: S \rightarrow \mathbf{Z}$ be defined as follows:

$$
f(x)=3 x^{6}
$$

a) What is the cardinality of the range of f ?
(Hint: No elaborate computation is required!) (5 points)
b) Yes or No: Is f a one-to-one function? \qquad (3 points)
c) Yes or No: Is f an onto function? \qquad (3 points)
d) Yes or No: Is f an invertible function? \qquad (3 points)
8) Completely evaluate the following sum:

$$
\sum_{j=1}^{3} \sum_{k=0}^{j-1}\left\lfloor\frac{j+k}{2}\right\rfloor
$$

Show all work! (12 points)

