Name:	

QUIZ 2 SECTIONS 1.4-1.7: BASIC STRUCTURES

- 1) Let T be the set $\{x \mid x \text{ is a prime number between 2 and 20, inclusive}\}$. Remember that a prime number is an integer greater than 1 that is divisible by no positive integer other than 1 and itself. (4 points)
 - a) Write down the elements of T.

- b) What is the cardinality of T (denoted "|T|")?
- 2) Let S be the set {Al, George, Pat, Ralph}. (10 points; 2 points each)
 - a) True or False: $\emptyset \in S$
 - b) True or False: $\emptyset \subseteq S$
 - c) Let P(S) be the power set of S. What is |P(S)|?
 - d) True or False: $\emptyset \in P(S)$
 - e) True or False: $\emptyset \subseteq P(S)$

3) If the cardinality of the set A is m and the cardinality of the set B is n, where m and n are both nonnegative integers, what is the cardinality of $P(A \times B)$, the power set of $A \times B$, in terms of m and n? (6 points)

4) Let the universal set U be $\{x \mid x \in \mathbb{Z} \text{ and } 1 \le x \le 10\}$. Let A_1 be the set $\{1, 2, 3, 4, 5\}$. Let A_2 be the set $\{2, 4, 6, 8, 10\}$. Let A_3 be the set $\{1, 2, 10\}$.

For each of a) through e), write down the elements of the set. (20 points; 4 points each)

- a) $A_1 A_2$
- b) \overline{A}_2
- c) $A_3 \cup \emptyset$
- $d) \qquad \bigcup_{i=1}^{3} A_{i}$
- e) $\bigcap_{i=1}^{3} A_{i}$

- 5) Let A and B be subsets of some universal set U. (25 points total)
 - a) Use the basic set identities to prove

$$\overline{A \cap \left(B \cup \overline{A}\right)} = \overline{A} \cup \overline{B}$$

(Hint: It's easier to use a Distributive Law first.) For full credit, show all steps! (15 points)

b) Simplify $\overline{(A \cup A) \cap \overline{A}}$. Your answer will be one of the following:

$$U, A, \overline{A}, \text{ or } \emptyset$$

For full credit, show all steps! (10 points)

6) (9 points total; 3 points each)

Let *A* be the set $\{1, 2, 3, 4\}$. Let *B* be the set $\{a, b, c, d, e\}$.

Let the function $f: A \rightarrow B$ be defined as follows:

$$f(1) = c$$

$$f(2) = b$$

$$f(3) = a$$

$$f(4) = e$$

- a) Yes or No: Is f a one-to-one function?
- b) Yes or No: Is f an onto function?
- c) Yes or No: Is f an invertible function?
- 7) (14 points total)

Let S be the set $\{x \mid x \in \mathbb{Z} \text{ and } -2 \le x \le 4\}$.

Let the function $f: S \rightarrow \mathbf{Z}$ be defined as follows:

$$f(x) = 3x^6$$

- a) What is the cardinality of the range of f?(Hint: No elaborate computation is required!)(5 points)
- b) Yes or No: Is f a one-to-one function? _____ (3 points)
- c) Yes or No: Is f an onto function? _____ (3 points)
- d) Yes or No: Is f an invertible function? _____ (3 points)

8) Completely evaluate the following sum:

$$\sum_{j=1}^{3} \sum_{k=0}^{j-1} \left\lfloor \frac{j+k}{2} \right\rfloor$$

Show all work! (12 points)