\qquad

QUIZ 3

SECTIONS 2.3-2.5: NUMBER THEORY

Show all work where appropriate! Your proofs will be graded on quality, clarity, completeness, and correctness.

1) (24 points total; 6 points each)
a) Find the prime factorization of 980 .
b) Find the prime factorization of 616 .
c) Using a) and b), give the prime factorization of $\operatorname{lcm}(980,616)$ and then evaluate this lcm.
d) Using a) and b), give the prime factorization of $\operatorname{gcd}(980,616)$ and then evaluate this gcd.
2) I know that $\operatorname{gcd}(4743,867)=51$. Find $1 \mathrm{~cm}(4743,867)$. Hint: There is a shortcut! (5 points)
3) Prove: If n is a composite integer, then it has a nontrivial positive factor that is less than or equal to \sqrt{n}. (10 points)
4) Find the highest integer n such that $3^{n} \mid 100!$; remember that $n!=(1)(2)(3) \cdots(n)$ for positive integers n. (10 points)
5) What is $1000 \bmod 7 ?(6$ points $)$
6) Yes or No: Is $3709 \equiv 37(\bmod 51)$? Justify your answer. (5 points)
7) Prove: If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a+c \equiv b+d(\bmod m)$. Assume that a, b, c, d, and m are integers, with $m \geq 2$. (10 points)
8) The binary representation of a positive integer is 1001001 . What is the decimal representation of this integer? (5 points)
9) The decimal representation of a positive integer is 182 . What is the binary representation of this integer? (5 points)
10) Use the method shown in class to find two integers s and t such that $1=59 s+56 t$. (10 points)
11) Use the method shown in class to find three positive integer solutions to the linear congruence $11 x+4 \equiv 13(\bmod 15)$.

- Hint: $1=(15)(3)-(11)(4)$.
- A "brute-force" approach will not receive full credit! (10 points)

