QUIZ 3
SECTIONS 2.3-2.5: NUMBER THEORY

Show all work where appropriate! Your proofs will be graded on quality, clarity, completeness, and correctness.

1) (24 points total; 6 points each)

 a) Find the prime factorization of 980.

 b) Find the prime factorization of 616.
c) Using a) and b), give the prime factorization of \(\text{lcm}(980,616) \) and then evaluate this \(\text{lcm} \).

d) Using a) and b), give the prime factorization of \(\text{gcd}(980,616) \) and then evaluate this \(\text{gcd} \).

2) I know that \(\text{gcd}(4743,867) = 51 \). Find \(\text{lcm}(4743,867) \).

 Hint: There is a shortcut! (5 points)

3) Prove: If \(n \) is a composite integer, then it has a nontrivial positive factor that is less than or equal to \(\sqrt{n} \). (10 points)
4) Find the highest integer \(n \) such that \(3^n \mid 100! \); remember that
\(n! = (1)(2)(3) \cdots (n) \) for positive integers \(n \). (10 points)

5) What is \(1000 \mod 7 \)? (6 points)

6) Yes or No: Is \(3709 \equiv 37 \pmod{51} \)? Justify your answer. (5 points)

7) Prove: If \(a \equiv b \pmod{m} \) and \(c \equiv d \pmod{m} \), then
\(a + c \equiv b + d \pmod{m} \). Assume that \(a, b, c, d, \) and \(m \) are integers,
with \(m \geq 2 \). (10 points)
8) The binary representation of a positive integer is 1001001. What is the decimal representation of this integer? (5 points)

9) The decimal representation of a positive integer is 182. What is the binary representation of this integer? (5 points)

10) Use the method shown in class to find two integers s and t such that $1 = 59s + 56t$. (10 points)
11) Use the method shown in class to find three positive integer solutions to the linear congruence $11x + 4 \equiv 13 \pmod{15}$.

- Hint: $1 = (15)(3) - (11)(4)$.
- A "brute-force" approach will not receive full credit!

(10 points)