MATH 245: QUIZ 1 SOLUTIONS

1) Only c) and e) are equivalent to "If p, then q ". The "Daddy/man" trick should help!
2) Rewrite the original statement as "If I pass this class, then I am going to Disneyland." Converse: If I am going to Disneyland, then I pass this class.
Contrapositive: If I am not going to Disneyland, then I do not pass this class.
3) $(q \vee r) \rightarrow(s \wedge \neg p)$. Actually, the parentheses are not necessary if the order of operators mentioned in class is adopted.
4) a)

p	q	$\neg p$	q	$(\neg p \vee q)$	$\neg q$	p	$(\neg q \vee p)$	$(\neg p \vee q) \wedge(\neg q \vee p)$
T	T	F	T	T	F	T	T	T
T	F	F	F	F	T	T	T	F
F	T	T	T	T	F	F	F	F
F	F	T	F	T	T	F	T	T

b) $p \leftrightarrow q$, which is True exactly when both p and q have the same truth value.
5)

p	q	r	$(p \rightarrow q)$	$(q \rightarrow r)$	$[(p \rightarrow q) \wedge(q \rightarrow r)]$	$(p \rightarrow r)$	$[(p \rightarrow q) \wedge(q \rightarrow r)] \rightarrow(p \rightarrow r)$
T	T	T	T	T	T	T	T
T	T	F	T	F	F	F	T
T	F	T	F	T	F	T	T
T	F	F	F	T	F	F	T
F	T	T	T	T	T	T	T
F	T	F	T	F	F	T	T
F	F	T	T	T	T	T	T
F	F	F	T	T	T	T	T

The final column consists of all "T"s, so the given proposition is a tautology.
6) $P(1) \vee P(2) \vee P(3)$
7)
a) F : at least one box is an " F ".
b) T : for the above reason. b) is the negation of a)!
c) F: x_{2} can't "find" a y to make P True.
d) T: each y can "find" at least one x to make P True.
e) T: the x_{2} column is all "F"s.
f) F: there is no row of "F"s.
8)
a) No
b) Yes

Check out the pictures in my lecture notes!
9) $\forall y \exists x \neg Q(x, y)$. Moving the " \neg " has the effect of "flipping" quantifiers.
10)
a) F: only $y=0$ would work, and 0 is outside the uod for y.
b) T: $x=0$ works, and 0 is in the uod for x.
c) F: whatever x is, only $y=x+6$ will make the equation true, but if $x \leq-6$, only a nonpositive value for y will work. So, no "legal" y that will make the equation hold exists for $x \leq-6$.
d) T : whatever y is, $x=y-6$ will make the equation true. y can only be a [positive] integer, so $y-6$ can only be an integer and is thus a "legal" value for x.
e) F: the equation is true only when $y=0$ or $z=0$, but 0 falls outside the uods for both y and z.
f) F : the unique solution to the system is $\left(y=\frac{11}{8}, z=\frac{3}{4}\right)$. This solution does not consist of only [positive] integers, so these are not "legal" values for y and z.
g) T : the unique solution to the system is $(y=4, z=3)$. This solution consists of only positive integers, so these are "legal" values for y and z.
h) F: if $x \leq 0$, its product with any positive integer y will not be a positive integer.
i) F: there is no "magic" pair of x and y that will work for all possible values of z.
j) T: any two positive integers y and z will have an integer product.

