MATH 245: QUIZ 1 SOLUTIONS

1) Only c) and e) are equivalent to "If p, then q". The "Daddy/man" trick should help!

2) Rewrite the original statement as "If I pass this class, then I am going to Disneyland." Converse: If I am going to Disneyland, then I pass this class. Contrapositive: If I am not going to Disneyland, then I do not pass this class.

3) $(q \lor r) \rightarrow (s \land \neg p)$. Actually, the parentheses are not necessary if the order of operators mentioned in class is adopted.

4) a)

-/	,									
1	9	q	$\neg p$	q	$(\neg p \lor q)$	$\neg q$	р	$(\neg q \lor p)$	$(\neg p \lor q) \land (\neg q \lor p)$	
· .	Г	Т	F	Т	Т	F	Т	Т	Т	
۲	Γ	F	F	F	F	Т	Т	Т	F	
]	T.	Т	Т	Т	Т	F	F	F	F	
]	F.	F	Т	F	Т	Т	F	Т	Т	

b) $p \leftrightarrow q$, which is True exactly when both p and q have the same truth value.

5)

p	q	r	$(p \rightarrow q)$	$(q \rightarrow r)$	$\left[(p \to q) \land (q \to r) \right]$	$(p \rightarrow r)$	$\left[(p \to q) \land (q \to r) \right] \to (p \to r)$
Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	F	Т	F	F	F	Т
Т	F	Т	F	Т	F	Т	Т
Т	F	F	F	Т	F	F	Т
F	Т	Т	Т	Т	Т	Т	Т
F	Т	F	Т	F	F	Т	Т
F	F	Т	Т	Т	Т	Т	Т
F	F	F	Т	Т	Т	Т	Т

The final column consists of all "T"s, so the given proposition is a tautology.

6) $P(1) \lor P(2) \lor P(3)$

7)

- a) F: at least one box is an "F".
- b) T: for the above reason. b) is the negation of a)!
- c) F: x_2 can't "find" a y to make P True.
- d) T: each y can "find" at least one x to make P True.
- e) T: the x_2 column is all "F"s.
- f) F: there is no row of "F"s.

8) a) No b) Yes Check out the pictures in my lecture notes! 9) $\forall y \exists x \neg Q(x, y)$. Moving the "¬" has the effect of "flipping" quantifiers.

10)

a) F: only *y*=0 would work, and 0 is outside the uod for *y*.

b) T: *x*=0 works, and 0 is in the uod for *x*.

c) F: whatever x is, only y = x + 6 will make the equation true, but if $x \le -6$, only a nonpositive value for y will work. So, no "legal" y that will make the equation hold exists for $x \le -6$.

d) T: whatever y is, x = y - 6 will make the equation true. y can only be a [positive] integer, so y - 6 can only be an integer and is thus a "legal" value for x.

e) F: the equation is true only when y=0 or z=0, but 0 falls outside the uods for both y and z.

f) F: the unique solution to the system is $\left(y = \frac{11}{8}, z = \frac{3}{4}\right)$. This solution does not consist of only [positive] integers, so these are not "legal" values for y and z.

g) T: the unique solution to the system is (y = 4, z = 3). This solution consists of only positive integers, so these are "legal" values for y and z.

h) F: if $x \le 0$, its product with any positive integer y will not be a positive integer.

i) F: there is no "magic" pair of x and y that will work for all possible values of z.

j) T: any two positive integers y and z will have an integer product.