MATH 245: OUIZ 2 SOLUTIONS

- 1) a) {2, 3, 5, 7, 11, 13, 17, 19}
 - b) |T| = 8
- 2) a) **False**; \emptyset is not an element of S.
 - b) **True**; \emptyset is always a subset of any [reasonable] set.
 - c) If n = |S| = 4, then $|P(S)| = 2^n = 2^4 = 16$
 - d) True; \emptyset is always a member of the power set of a [reasonable] set.
 - e) **True**; P(S) is, itself, a set, so \emptyset is a subset.
- The cardinality of $A \times B$ is mn, so the cardinality of $P(A \times B)$ is 2^{mn} . One interpretation: Think of a two-dimensional coordinate system in which the elements of A are the possible horizontal coordinates and the elements of B are the possible vertical coordinates. Then, $A \times B$ is the set of all mn possible points in this coordinate system. $P(A \times B)$ then consists of all possible graphs, or point-plots; its cardinality is 2^{mn} , which corresponds to the fact that each of the 2^{mn} points can be either in a given point-plot or not.
- 4) a) $\{1, 3, 5\}$, which has the elements that are in A_1 but not in A_2 .
 - b) $\{1, 3, 5, 7, 9\}$, which has the elements in U that are not in A_2 .
 - c) $A_3 \cup \emptyset = A_3 = \{1, 2, 10\}.$
 - d) $\{1, 2, 3, 4, 5, 6, 8, 10\}$, which is the entire collection of elements from the A_i sets.
 - e) $\{2\}$. 2 is the only element that appears in all the A_i sets.
- 5) (Steps may vary.)

a)
$$\overline{A \cap (B \cup \overline{A})} = \overline{(A \cap B) \cup (A \cap \overline{A})}$$
$$= \overline{(A \cap B) \cup \emptyset}$$
$$= \overline{(A \cap B)}$$
$$= \overline{A} \cup \overline{B} \text{ (DeMorgan)}$$

b)
$$\overline{(A \cup A) \cap \overline{A}} = \overline{A \cap \overline{A}}$$

$$= \overline{\varnothing}$$

$$= U$$

- a) **Yes.** f is one-to-one, since different elements in the domain are mapped to different elements in the codomain.
 - b) **No.** f is not onto, because d does not have a preimage.
 - c) No. An invertible function must be both one-to-one and onto.

- a) The elements 0, 1, 2, 3, and 4 in the domain S get mapped to different elements in the codomain \mathbb{Z} . However, -1 gets mapped to the same element in \mathbb{Z} as 1 does, and -2 gets mapped to the same element in \mathbb{Z} as 2 does; this is because f depends on x only through an even power of x, namely x^6 . So, the cardinality of the range of f = the number of images in \mathbb{Z} = $\mathbf{5}$.
- b) No. f is not one-to-one; for example, +1 and -1 get mapped to the same element in \mathbf{Z} (namely, 3).
- c) No. f is not onto, since not every integer is an image. The range (which is finite) is clearly not equal to the codomain \mathbf{Z} (which is infinite).
- d) **No.** f can't have an inverse function.

8)
$$\sum_{j=1}^{3} \sum_{k=0}^{j-1} \left\lfloor \frac{j+k}{2} \right\rfloor = \sum_{k=0}^{0} \left\lfloor \frac{1+k}{2} \right\rfloor + \sum_{k=0}^{1} \left\lfloor \frac{2+k}{2} \right\rfloor + \sum_{k=0}^{2} \left\lfloor \frac{3+k}{2} \right\rfloor \\
= \left(\left\lfloor \frac{1+0}{2} \right\rfloor \right) + \left(\left\lfloor \frac{2+0}{2} \right\rfloor + \left\lfloor \frac{2+1}{2} \right\rfloor \right) + \left(\left\lfloor \frac{3+0}{2} \right\rfloor + \left\lfloor \frac{3+1}{2} \right\rfloor + \left\lfloor \frac{3+2}{2} \right\rfloor \right) \\
= \left(\left\lfloor \frac{1}{2} \right\rfloor \right) + \left(\left\lfloor 1 \right\rfloor + \left\lfloor \frac{3}{2} \right\rfloor \right) + \left(\left\lfloor \frac{3}{2} \right\rfloor + \left\lfloor 2 \right\rfloor + \left\lfloor \frac{5}{2} \right\rfloor \right) \\
= (0) + (1+1) + (1+2+2) \\
= 7$$

A grid could also help:

j k	0	1	2
1	$\left\lfloor \frac{1+0}{2} \right\rfloor = 0$		
2	$\left\lfloor \frac{2+0}{2} \right\rfloor = 1$	$\left\lfloor \frac{2+1}{2} \right\rfloor = 1$	
3	$\left\lfloor \frac{3+0}{2} \right\rfloor = 1$	$\left\lfloor \frac{3+1}{2} \right\rfloor = 2$	$\left\lfloor \frac{3+2}{2} \right\rfloor = 2$