1) a) $\{2,3,5,7,11,13,17,19\}$
b) $|T|=8$
2) a) False; \varnothing is not an element of S.
b) True; \varnothing is always a subset of any [reasonable] set.
c) If $n=|S|=4$, then $|P(S)|=2^{n}=2^{4}=\mathbf{1 6}$
d) True; \varnothing is always a member of the power set of a [reasonable] set.
e) True; $P(S)$ is, itself, a set, so \varnothing is a subset.
3) The cardinality of $A \times B$ is $m n$, so the cardinality of $P(A \times B)$ is $\mathbf{2}^{\mathbf{m n}}$. One interpretation: Think of a two-dimensional coordinate system in which the elements of A are the possible horizontal coordinates and the elements of B are the possible vertical coordinates. Then, $A \times B$ is the set of all $m n$ possible points in this coordinate system. $P(A \times B)$ then consists of all possible graphs, or pointplots; its cardinality is $2^{m n}$, which corresponds to the fact that each of the $2^{m n}$ points can be either in a given point-plot or not.
4) a) $\{1, \mathbf{3}, \mathbf{5}\}$, which has the elements that are in A_{1} but not in A_{2}.
b) $\quad\{1, \mathbf{3}, \mathbf{5}, \mathbf{7}, \mathbf{9}\}$, which has the elements in U that are not in A_{2}.
c) $\quad A_{3} \cup \varnothing=A_{3}=\{\mathbf{1}, \mathbf{2}, \mathbf{1 0}\}$.
d) $\{1,2,3,4,5,6,8,10\}$, which is the entire collection of elements from the A_{i} sets.
e) $\quad\{2\} .2$ is the only element that appears in all the A_{i} sets.
5) (Steps may vary.)
a)

$$
\begin{aligned}
\overline{A \cap(B \cup \bar{A})} & =\overline{(A \cap B) \cup(A \cap \bar{A})} \\
& =\overline{(A \cap B) \cup \varnothing} \\
& =\overline{(A \cap B)} \\
& =\bar{A} \cup \bar{B} \quad(\text { DeMorgan })
\end{aligned}
$$

b)

$$
\begin{aligned}
\overline{(A \cup A) \cap \bar{A}} & =\overline{A \cap \bar{A}} \\
& =\bar{\varnothing} \\
& =U
\end{aligned}
$$

6) a) Yes. f is one-to-one, since different elements in the domain are mapped to different elements in the codomain.
b) No. f is not onto, because d does not have a preimage.
c) No. An invertible function must be both one-to-one and onto.
a) The elements $0,1,2,3$, and 4 in the domain S get mapped to different elements in the codomain \mathbf{Z}. However, -1 gets mapped to the same element in \mathbf{Z} as 1 does, and - 2 gets mapped to the same element in \mathbf{Z} as 2 does; this is because f depends on x only through an even power of x, namely x^{6}. So, the cardinality of the range of $f=$ the number of images in \mathbf{Z} $=5$.
b) No. f is not one-to-one; for example, +1 and -1 get mapped to the same element in \mathbf{Z} (namely, 3).
c) No. f is not onto, since not every integer is an image. The range (which is finite) is clearly not equal to the codomain \mathbf{Z} (which is infinite).
d) No. f can't have an inverse function.
7)

$$
\begin{aligned}
& \sum_{j=1}^{3} \sum_{k=0}^{j-1}\left\lfloor\frac{j+k}{2}\right\rfloor=\underbrace{\sum_{k=0}^{0}\left\lfloor\frac{1+k}{2}\right\rfloor}_{j=1}+\underbrace{\sum_{k=0}^{1}\left\lfloor\frac{2+k}{2}\right\rfloor}_{j=2}+\underbrace{\sum_{k=0}^{2}\left\lfloor\frac{3+k}{2}\right\rfloor}_{j=3} \\
& =\underbrace{\left(\left\lfloor\frac{1+0}{2}\right\rfloor\right.}_{j=1}+\underbrace{\left(\left\lfloor\frac{2+0}{2}\right\rfloor+\left\lfloor\frac{2+1}{2}\right\rfloor\right)}_{j=2}+\left(\left\lfloor\frac{3+0}{2}\right\rfloor+\left\lfloor\frac{3+1}{2}\right\rfloor+\left\lfloor\frac{3+2}{2}\right\rfloor\right) \\
& =\left(\left\lfloor\frac{1}{2}\right\rfloor\right)+\left(\lfloor 1\rfloor+\left\lfloor\frac{3}{2}\right\rfloor\right)+\left(\left\lfloor\frac{3}{2}\right\rfloor+\lfloor 2\rfloor+\left\lfloor\frac{5}{2}\right\rfloor\right) \\
& =(0)+(1+1)+(1+2+2) \\
& =7
\end{aligned}
$$

A grid could also help:

j	k	0	1
1	$\left\lfloor\frac{1+0}{2}\right\rfloor=0$		2
2	$\left\lfloor\frac{2+0}{2}\right\rfloor=1$	$\left\lfloor\frac{2+1}{2}\right\rfloor=1$	
3	$\left\lfloor\frac{3+0}{2}\right\rfloor=1$	$\left\lfloor\frac{3+1}{2}\right\rfloor=2$	$\left\lfloor\frac{3+2}{2}\right\rfloor=2$

