1)

a) $\quad 980=(2)(2)(5)(7)(7)=\mathbf{2}^{\mathbf{2}} \cdot \mathbf{5} \cdot \mathbf{7}^{\mathbf{2}}$
b) $\quad 616=(2)(2)(2)(7)(11)=\mathbf{2}^{3} \cdot \mathbf{7} \cdot \mathbf{1 1}$
c) The prime factors of interest are $2,5,7$, and 11 .

For the lcm, we take the larger exponent on each prime factor.

$$
\begin{aligned}
& 980=2^{2} \cdot 5^{1} \cdot 7^{2} \cdot 11^{0} \\
& 616=2^{3} \cdot 5^{0} \cdot 7^{1} \cdot 11^{1} \\
& \mathrm{lcm}=2^{3} \cdot 5^{1} \cdot 7^{2} \cdot 11^{1}=\mathbf{2 1 , 5 6 0}
\end{aligned}
$$

d) For the gcd, we take the smaller exponent on each prime factor.

$$
\begin{aligned}
& 980=2^{2} \cdot 5^{1} \cdot 7^{2} \cdot 11^{0} \\
& 616=2^{3} \cdot 5^{0} \cdot 7^{1} \cdot 11^{1} \\
& \operatorname{gcd}=2^{2} \cdot 5^{0} \cdot 7^{1} \cdot 11^{0}=2^{2} \cdot 7=\mathbf{2 8}
\end{aligned}
$$

2)

Let $a=4743$ and $b=867$.

$$
\begin{aligned}
a b & =\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b) \\
(4743)(867) & =(51) \cdot \operatorname{lcm}(a, b) \\
\operatorname{lcm}(a, b) & =\frac{(4743)(867)}{51}=\mathbf{8 0 , 6 3 1}
\end{aligned}
$$

3)

Let n be a composite integer.
Then, $n=r s$ for some integers r and s strictly between 1 and n.
If both r and s are greater than \sqrt{n}, then
$r s>\sqrt{n} \sqrt{n}=n$, which contradicts " $n=r s$."
So, one or both of r or s must be less than or equal to \sqrt{n}.
4)

Think of 100 ! as (1)(2)(3) $\cdots(100)$. We want to count the number of "3-factors" in the integers from 1 to 100 .
There are $\left\lfloor\frac{100}{3}\right\rfloor=33$ multiples of 3 between 1 and 100. $(3,6,9, \ldots, 99)$
We can pick up one 3-factor from each of these 33 multiples.
There are $\left\lfloor\frac{100}{9}\right\rfloor=11$ multiples of 9 between 1 and 100. $(9,18,27, \ldots, 99)$
We can pick up a second 3-factor from each of these 11 multiples.
There are $\left\lfloor\frac{100}{27}\right\rfloor=3$ multiples of 27 between 1 and 100. $(27,54,81)$
We can pick up a third 3-factor from each of these 3 multiples.
There is $\left\lfloor\frac{100}{81}\right\rfloor=1$ multiple of 81 between 1 and 100. (Just 81, itself)
We can pick up a fourth 3-factor from the 81.
No higher power of 3 will divide an integer from 1 to 100 .
So, there are a total of $n=33+11+3+1=48$ "3-factors" in 100 !.
5)

When 1000 is divided by 7 , the quotient is $\left\lfloor\frac{1000}{7}\right\rfloor=142$.
Let $a=1000, d=7$, and $q=142$. We want the remainder, r.

$$
\begin{aligned}
a & =d q+r \\
1000 & =(7)(142)+r \\
1000 & =994+r \\
r & =6
\end{aligned}
$$

6) Yes. 3709-37 $=3672$, which is divisible by 51 .
7)

$a \equiv b(\bmod m)$, so $\exists s \in \mathbf{Z}$ such that $a=b+s m$
$c \equiv d(\bmod m)$, so $\exists t \in \mathbf{Z}$ such that $c=d+t m$
Then, $\exists s, t \in \mathbf{Z}$ such that:

$$
\begin{aligned}
& a+c=(b+s m)+(d+t m) \\
& a+c=(b+d)+(s m+t m) \\
& a+c=(b+d)+m(s+t)
\end{aligned}
$$

$s+t \in \mathbf{Z}$, so $a+c \equiv b+d(\bmod m)$.
8) $2^{0}+2^{3}+2^{6}=1+8+64=\mathbf{7 3}$
9)

Bit Position Value	Bit	Remainder r
		182
128	1	54
64	0	54
32	1	22
16	1	6
8	0	6
4	1	2
2	1	0
1	0	0

Binary representation (reading down the bits): 10110110

First, work out the Euclidean Algorithm:

$$
\begin{aligned}
59 & =56 \cdot 1+3 \quad(A) \\
56 & =3 \cdot 18+2 \quad(B) \\
3 & =2 \cdot 1+1 \quad(C)
\end{aligned}
$$

Solve for the remainder in each equation:

$$
\begin{array}{ll}
1=3-2 \cdot 1 & \left(C^{*}\right) \\
2=56-3 \cdot 18 & \left(B^{*}\right) \\
3=59-56 \cdot 1 & \left(A^{*}\right)
\end{array}
$$

Replace the " 2 " in $\left(C^{*}\right)$ with the expression in $\left(B^{*}\right)$:

$$
\begin{aligned}
& 1=3-(56-3 \cdot 18) \cdot 1 \\
& 1=3-56+3 \cdot 18 \\
& 1=3 \cdot 19-56
\end{aligned}
$$

Replace the " 3 " with the expression in $\left(A^{*}\right)$:

$$
\begin{aligned}
& 1=(59-56 \cdot 1) \cdot 19-56 \\
& 1=59 \cdot 19-56 \cdot 19-56 \\
& 1=59 \cdot 19-56 \cdot 20 \\
& 1=59 \cdot 19+56 \cdot(-20)
\end{aligned}
$$

So, $s=19$ and $t=-20$ will work.
11)

Let's subtract 4 from both sides of the congruence.

$$
\begin{aligned}
11 x+4 & \equiv 13(\bmod 15) \\
11 x & \equiv 9(\bmod 15)\left(^{*}\right)
\end{aligned}
$$

The hint tells us that -4 is a [multiplicative] inverse of $11(\bmod 15)$:
Since 1 and (15)(3)-(11)(4) are the same number, they must have the same remainder when they are divided by 15 :

$$
1 \equiv(15)(3)-(11)(4)(\bmod 15)
$$

A term that is a multiple of 15 acts like 0 in $\bmod 15$ arithmetic.

$$
\begin{aligned}
& 1 \equiv-(11)(4)(\bmod 15) \\
& 1 \equiv(11)(-4)(\bmod 15)
\end{aligned}
$$

Now, multiply both sides of (*) by -4.
We know that -4 is an inverse of $11(\bmod 15)$, so we know that the left side will just be $1 x(\bmod 15)$.

$$
\begin{aligned}
(-4)(11) x & \equiv(-4)(9)(\bmod 15) \\
x & \equiv-36(\bmod 15)
\end{aligned}
$$

So, -36 is a solution to the given congruence. More generally, the congruence class (mod 15) containing -36 consists of all the solutions to the given congruence. We want three positive solutions, so let's keep adding 15 until we get three positive solutions: $-36,-21,-6,9,24,39, \ldots$

So, 9, 24, and 39 are three positive integer solutions.
(There are other possible answers.)

