MATH 245: QUIZ 3 SOLUTIONS

1) a)
$$980 = (2)(2)(5)(7)(7) = 2^2 \cdot 5 \cdot 7^2$$

b)
$$616 = (2)(2)(2)(7)(11) = 2^3 \cdot 7 \cdot 11$$

c) The prime factors of interest are 2, 5, 7, and 11.

For the lcm, we take the larger exponent on each prime factor.

$$980 = 2^2 \cdot 5^1 \cdot 7^2 \cdot 11^0$$

$$616 = 2^3 \cdot 5^0 \cdot 7^1 \cdot 11^1$$

$$lcm = 2^3 \cdot 5^1 \cdot 7^2 \cdot 11^1 = 21,560$$

d) For the gcd, we take the smaller exponent on each prime factor.

$$980 = 2^2 \cdot 5^1 \cdot 7^2 \cdot 11^0$$

$$616 = 2^3 \cdot 5^0 \cdot 7^1 \cdot 11^1$$

$$\gcd = 2^2 \cdot 5^0 \cdot 7^1 \cdot 11^0 = 2^2 \cdot 7 = \mathbf{28}$$

2) Let a = 4743 and b = 867.

$$ab = \gcd(a, b) \cdot \operatorname{lcm}(a, b)$$

$$(4743)(867) = (51) \cdot \text{lcm}(a, b)$$

$$lcm(a,b) = \frac{(4743)(867)}{51} = 80,631$$

3) Let *n* be a composite integer.

Then, n = rs for some integers r and s strictly between 1 and n.

If both r and s are greater than \sqrt{n} , then

$$rs > \sqrt{n} \sqrt{n} = n$$
, which contradicts " $n = rs$."

So, one or both of r or s must be less than or equal to \sqrt{n} .

Think of 100! as (1)(2)(3)···(100). We want to count the number of "3-factors" in the integers from 1 to 100.

There are
$$\left[\frac{100}{3}\right] = 33$$
 multiples of 3 between 1 and 100. (3, 6, 9, ..., 99)

We can pick up one 3-factor from each of these 33 multiples.

There are
$$\left[\frac{100}{9}\right] = 11$$
 multiples of 9 between 1 and 100. (9, 18, 27, ..., 99)

We can pick up a second 3-factor from each of these 11 multiples.

There are
$$\left\lfloor \frac{100}{27} \right\rfloor = 3$$
 multiples of 27 between 1 and 100. (27, 54, 81)

We can pick up a third 3-factor from each of these 3 multiples.

There is
$$\left| \frac{100}{81} \right| = 1$$
 multiple of 81 between 1 and 100. (Just 81, itself)

We can pick up a fourth 3-factor from the 81.

No higher power of 3 will divide an integer from 1 to 100.

So, there are a total of n = 33+11+3+1 = 48 "3-factors" in 100!.

When 1000 is divided by 7, the quotient is $\left\lfloor \frac{1000}{7} \right\rfloor = 142$.

Let a = 1000, d = 7, and q = 142. We want the remainder, r.

$$a = dq + r$$

$$1000 = (7)(142) + r$$

$$1000 = 994 + r$$

$$r = 6$$

- 6) **Yes**. 3709 37 = 3672, which is divisible by 51.
- 7) $a \equiv b \pmod{m}$, so $\exists s \in \mathbb{Z}$ such that a = b + sm $c \equiv d \pmod{m}$, so $\exists t \in \mathbb{Z}$ such that c = d + tm Then, $\exists s, t \in \mathbb{Z}$ such that:

$$a + c = (b + sm) + (d + tm)$$

 $a + c = (b + d) + (sm + tm)$
 $a + c = (b + d) + m(s + t)$

 $s+t \in \mathbb{Z}$, so $a+c \equiv b+d \pmod{m}$.

8)
$$2^0 + 2^3 + 2^6 = 1 + 8 + 64 = 73$$

9)

Bit Position Value	Bit	Remainder r
		182
128	1	54
64	0	54
32	1	22
16	1	6
8	0	6
4	1	2
2	1	0
1	0	0

Binary representation (reading down the bits): 10110110

First, work out the Euclidean Algorithm:

$$59 = 56 \cdot 1 + 3$$
 (*A*)

$$56 = 3 \cdot 18 + 2$$
 (*B*)

$$3 = 2 \cdot 1 + 1$$
 (*C*)

Solve for the remainder in each equation:

$$1 = 3 - 2 \cdot 1 \quad (C^*)$$

$$2 = 56 - 3.18$$
 (*B**)

$$3 = 59 - 56 \cdot 1 \quad (A^*)$$

Replace the "2" in (C^*) with the expression in (B^*) :

$$1 = 3 - (56 - 3 \cdot 18) \cdot 1$$

$$1 = 3 - 56 + 3.18$$

$$1 = 3 \cdot 19 - 56$$

Replace the "3" with the expression in (A^*) :

$$1 = (59 - 56 \cdot 1) \cdot 19 - 56$$

$$1 = 59 \cdot 19 - 56 \cdot 19 - 56$$

$$1 = 59 \cdot 19 - 56 \cdot 20$$

$$1 = 59 \cdot 19 + 56 \cdot (-20)$$

So, s = 19 and t = -20 will work.

Let's subtract 4 from both sides of the congruence.

$$11x + 4 \equiv 13 \pmod{15}$$

 $11x \equiv 9 \pmod{15}$ (*)

The hint tells us that -4 is a [multiplicative] inverse of 11 (mod 15):

Since 1 and (15)(3) - (11)(4) are the same number, they must have the same remainder when they are divided by 15:

$$1 \equiv (15)(3) - (11)(4) \pmod{15}$$

A term that is a multiple of 15 acts like 0 in mod 15 arithmetic.

$$1 \equiv -(11)(4) \pmod{15}$$

 $1 \equiv (11)(-4) \pmod{15}$

Now, multiply both sides of (*) by -4.

We know that -4 is an inverse of 11 (mod 15), so we know that the left side will just be $1x \pmod{15}$.

$$(-4)(11)x \equiv (-4)(9) \pmod{15}$$

 $x \equiv -36 \pmod{15}$

So, -36 is a solution to the given congruence. More generally, the congruence class (mod 15) containing -36 consists of all the solutions to the given congruence. We want three positive solutions, so let's keep adding 15 until we get three positive solutions: -36, -21, -6, 9, 24, 39, ...

So, **9, 24, and 39** are three positive integer solutions. (There are other possible answers.)