1)

Let c be the conjecture " $\sqrt{3}$ is irrational". Let's use a proof by contradiction to prove c.

Assume $\neg c$, the conjecture " $\sqrt{3}$ is rational", is true.
Then, there exist relatively prime $a \in \mathbf{Z}$ and $b \in \mathbf{Z}(b \neq 0)$ such that $\sqrt{3}=\frac{a}{b}$. (The "relatively prime" condition ensures that the fraction is in lowest terms.)

$$
\begin{aligned}
\sqrt{3} & =\frac{a}{b} \\
\Rightarrow \quad 3 & =\frac{a^{2}}{b^{2}} \\
\Rightarrow 3 b^{2} & =a^{2} \\
& b^{2} \in \mathbf{Z}, \text { so } 3 \text { divides } a^{2} \text { and is, therefore, a prime factor } \\
& \text { of } a^{2} . \text { Any prime factor of } a^{2} \text { must also be a prime factor } \\
& \text { of } a, \text { so } 3 \text { must also divide } a . \text { That means that } \\
& \exists c \in \mathbf{Z}: a=3 c . \\
\Rightarrow 3 b^{2} & =(3 c)^{2} \\
\Rightarrow 3 b^{2} & =9 c^{2} \\
\Rightarrow b^{2} & =3 c^{2} \\
& c^{2} \in \mathbf{Z}, \text { so } 3 \text { divides } b^{2} \text { and is, therefore, a prime factor } \\
& \text { of } b^{2} . \text { Any prime factor of } b^{2} \text { must also be a prime factor } \\
& \text { of } b, \text { so } 3 \text { must also divide } b .
\end{aligned}
$$

We've shown that 3 must divide both a and b, which contradicts the relative primality of a and b.

Therefore, $\neg c$ is false, and c is true.

Another proof:

If $\sqrt{3}$ were rational, then it would be a rational root of the polynomial $x^{2}-3$. However, the Rational Roots Theorem suggests that the only possible rational roots of this polynomial are ± 1 and ± 3. $\sqrt{3}$ is not equal to any of those possibilities, so $\sqrt{3}$ must be irrational.
a) Contrapositive: "If four real numbers are at least 25 , then their sum is at least 100."
b) True. You didn't need to show this, but here's a proof of the contrapositive:

Let x_{1}, x_{2}, x_{3}, and x_{4} be any four real numbers that are at least 25 . Then, their sum, $x_{1}+x_{2}+x_{3}+x_{4} \geq 25+25+25+25=100$.
3) The proof is given on p .191 in Rosen.
4)

Let $P(n)$ be " n cents of postage can be obtained by using 4-cent stamps and/or 7cent stamps."

Basis Step:

$P(20)$ is true: 20 cents can be obtained by using five 4 -cent stamps.

Inductive Step:

Let $n \in \mathbf{Z}(n \geq 20)$; in other words, let n be an arbitrary integer that is at least 20 .

Inductive hypothesis: Assume $P(n)$ is true.
Show $P(n+1)$ is true.
Case 1: a 7-cent stamp can be used to help make n cents of postage
Using such a combination of stamps to make n cents of postage, we can then obtain $n+1$ cents by replacing a 7 -cent stamp with two 4 -cent stamps (value: 8 cents).

Case 2: only 4-cent stamps can be used to make n cents of postage
Since $n \geq 20$ by assumption, at least five 4 -cent stamps must be used to make the n cents of postage. We can then obtain $n+1$ cents by replacing five 4 -cent stamps (value: 20 cents) with three 7 -cent stamps (value: 21 cents).

In either case, postage of $n+1$ cents can be obtained by using only 4 -cent stamps and/or 7-cent stamps.
5) Let $P(n)$ be $a_{n} \leq\left(\frac{4}{3}\right)^{n}$.

By the nature of the recursive definition, our inductive step requires "lookups" of up to three "dominoes" back. So, we need three base cases.

Basis Step:

$P(0)$ is true: $a_{0}=1 \leq\left(\frac{4}{3}\right)^{0}=1$.
$P(1)$ is true: $a_{1}=1 \leq\left(\frac{4}{3}\right)^{1}=\frac{4}{3}$.
$P(2)$ is true: $a_{2}=1 \leq\left(\frac{4}{3}\right)^{2}=\frac{16}{9}$.

Inductive Step:

Let $n \in \mathbf{Z}(n \geq 2)$; in other words, let n be an arbitrary integer that is at least 2 .

Inductive hypothesis: Assume $P(0), P(1), P(2), \ldots, P(n)$ are true. i.e., Assume $\forall k(0 \leq k \leq n) P(k)$.

Show $P(n+1): a_{n+1} \leq\left(\frac{4}{3}\right)^{n+1}$ is true.

$$
\begin{aligned}
& a_{n+1}=a_{n-1}+a_{n-2} \\
& a_{n+1} \leq\left(\frac{4}{3}\right)^{n-1}+\left(\frac{4}{3}\right)^{n-2} \quad \text { (by the inductive hypothesis) } \\
& a_{n+1} \leq\left(\frac{4}{3}\right)^{n-2}\left(\frac{4}{3}+1\right) \quad\left(\text { factor out }\left(\frac{4}{3}\right)^{n-2}\right) \\
& a_{n+1} \leq\left(\frac{4}{3}\right)^{n-2}\left(\frac{7}{3}\right)
\end{aligned}
$$

Remember, I want to show that $a_{n+1} \leq\left(\frac{4}{3}\right)^{n+1}$ is true.
Let's show that $\frac{7}{3} \leq\left(\frac{4}{3}\right)^{3}$:

$$
\begin{aligned}
& \quad\left(\frac{4}{3}\right)^{3}=\frac{64}{27} \text {, while } \frac{7}{3}=\frac{63}{27} \text {, so } \frac{7}{3} \leq\left(\frac{4}{3}\right)^{3} . \\
& a_{n+1} \leq\left(\frac{4}{3}\right)^{n-2}\left(\frac{7}{3}\right) \\
& a_{n+1} \leq\left(\frac{4}{3}\right)^{n-2}\left(\frac{4}{3}\right)^{3} \\
& a_{n+1} \leq\left(\frac{4}{3}\right)^{n+1}
\end{aligned}
$$

