1)

a) An extreme scenario: It doesn't get any worse than this - you pick 4 reds, 4 blues, and 4 greens. I must get at least 5 balls of the same color by the $13^{\text {th }}$ ball. Answer: 13.
b) An extreme scenario: You pick the 10 reds, then the 10 blues; the next 5 balls must be green. You must get at least 5 greens by the $25^{\text {th }}$ ball.
Answer: 25.
2)

I want to count the relevant integers that are divisible by 5 , but I need to subtract the number of those integers that are also divisible by 15.
$\left\lfloor\frac{4999}{5}\right\rfloor-\left\lfloor\frac{4999}{15}\right\rfloor=999-333=\mathbf{6 6 6}$
3)
a) Start with the leftmost position, then do the rightmost position, and then do the intermediate positions from left to right:

$$
\frac{5}{V} \frac{24}{23} \frac{22}{21} \frac{21}{C} \quad \text { Product }=\mathbf{2 6 , 7 7 7 , 5 2 0}
$$

b)

The number of strings that begin with a vowel:

$$
\frac{5}{V} \underline{26} \underline{26} \underline{26} 26 \underline{26} \quad \text { Product }=5 \times 26^{5}
$$

The number of strings that end with a vowel:

$$
\underline{26} 26 \underline{26} 2626 \frac{5}{V} \quad \text { Product }=5 \times 26^{5}
$$

However, we are double-counting the strings that begin and end with a vowel. By the inclusion-exclusion principle, I should subtract the number of these strings:

$$
\frac{5}{V} 26262626 \frac{2}{V} \quad \text { Product }=25 \times 26^{4}
$$

Answer: $5 \times 26^{5}+5 \times 26^{5}-25 \times 26^{4}=10 \times 26^{5}-25 \times 26^{4}=\mathbf{1 0 7 , 3 8 9}, \mathbf{3 6 0}$.
c) We should take the total number of unrestricted 6 -letter strings $\left(26^{6}\right)$ and subtract the number of 6 -letter strings with NO consonants (i.e., all vowels: 5^{6}).
Answer: $26^{6}-5^{6}=\mathbf{3 0 8 , 9 0 0 , 1 5 1}$.
4)

Case 1: George finishes $1^{\text {st }}$, and Dick finishes $4^{\text {th }}$:

$$
\frac{1}{G} \frac{5}{-}-\frac{1}{D} \frac{3}{2}-\frac{1}{-} \quad \text { Product }=5!=120
$$

There are a total of 4 symmetric cases:
$\left.\begin{array}{llllllll}\text { Place: } & & 1 & 2 & 3 & 4 & 5 & 6\end{array}\right]$

Answer: $4 \times 5!=\mathbf{4 8 0}$.
5)

$$
\binom{20}{13}=77,520
$$

6)

Case 1: 11 females and 2 males attend

$$
\left(\# \text { ways to "pick" the females)(\# ways to "pick" the males) }=\binom{12}{11}\binom{8}{2}\right.
$$

Case 2: 12 females and 1 male attend

$$
\left(\# \text { ways to "pick" the females)(\# ways to "pick" the males) }=\binom{12}{12}\binom{8}{1}\right.
$$

(There are only 12 females in the class, so we can't have 13 females attending.)
Answer: $\binom{12}{11}\binom{8}{2}+\binom{12}{12}\binom{8}{1}=336+8=\mathbf{3 4 4}$.
7)

$$
\binom{10}{7}=\binom{10}{3}=120 .
$$

8)

Case 1: The three "0"s are in the first three positions:

$$
\text { Product }=2^{5}=32
$$

There are a total of $\binom{8}{3}$ symmetric cases, corresponding to the possible ways of "placing" the three " 0 "s.

Answer: $32\binom{8}{3}=\mathbf{3 2 (5 6)}=1792$.
9)
$\frac{100}{M} \frac{99}{D M} \frac{98}{T} \frac{97}{D} \quad$ Product $=\boldsymbol{P}(\mathbf{1 0 0}, \mathbf{4})=\mathbf{9 4 , 1 0 9 , 4 0 0}$.
10)

$$
\binom{\mathbf{5 0}}{\mathbf{2 5}}=\text { about } 1.26 \times 10^{14}
$$

