MATH 245: QUIZ 6 SOLUTIONS

1) Let $a_{n}=$ the number of bit strings of length n with at least one occurrence of "1111". Consider the following disjoint cases:

Case 1: $0 \underbrace{}_{\text {length } n-1} \quad a_{n-1}$ possibilities
Case 2: $10 \underbrace{}_{\text {length } n-2} \quad a_{n-2}$ possibilities
Case 3: $110 \underbrace{}_{\text {length } n-3} a_{n-3}$ possibilities
Case 4: $1110 \underbrace{}_{\text {length } n-4} a_{n-4}$ possibilities
Case 5: $1111 \underbrace{}_{\text {length } n-4} 2^{n-4}$ possibilities, since the rest of the string can be any sequence of $n-4$ bits.

Answer: $a_{n}=a_{n-1}+a_{n-2}+a_{n-3}+a_{n-4}+2^{n-4}$
2)
a) Let $a_{n}=$ the number of decimal strings of length n with no occurrences of " 000 ".

Case 1: $\frac{9 \text { possibilities }}{\text { can be } 1-9} \underbrace{}_{\text {length } n-1} \quad 9 a_{n-1}$ possibilities
Case 2: $\frac{1}{" 0 "} \frac{9}{\text { can be } 1-9} \underbrace{}_{\text {length } n-2} \quad 9 a_{n-2}$ possibilities
Case 3: $\frac{1}{" 0 "} \frac{1}{" 0 "} \frac{9}{\text { can be } 1-9} \underbrace{}_{\text {length } n-3} \quad 9 a_{n-3}$ possibilities

Answer: $a_{n}=9 a_{n-1}+9 a_{n-2}+9 a_{n-3}$
b)

There are $10^{3}=1000$ decimal strings of length 3 , and only one contains " 000 ", namely "000", itself. Answer: 999.
c)

It might be a better idea to start off by counting the number of 4-length decimal strings that do contain " 000 ".

Let A be the set of decimal strings of the form " $000 _$". $|A|=10$, since there are 10 ways to fill in "_".
Let B be the set of decimal strings of the form " $_000$ ". $|B|=10$, since there are 10 ways to fill in "_".
There is exactly one string in both sets that is being double-counted, namely "0000".
So, $|A \cup B|=|A|+|B|-|A \cap B|=10+10-1=19$.
There are a total of $10^{4}=10,000$ decimal strings of length 4 , so the answer is $10,000-19=9981$.
3)

$$
\begin{aligned}
a_{n} & =7 a_{n-1}-6 a_{n-2} \\
a_{n}-7 a_{n-1}+6 a_{n-2} & =0 \\
r^{2}-7 r+6 & =0 \\
(r-6)(r-1) & =0
\end{aligned}
$$

There are two roots: $r=6$ and $r=1$.
Solutions to the recurrence relation:

$$
\begin{aligned}
& a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n} \\
& a_{n}=\alpha_{1}(6)^{n}+\alpha_{2}(1)^{n} \\
& a_{n}=\alpha_{1}(6)^{n}+\alpha_{2}
\end{aligned}
$$

Use the initial conditions:

$$
\begin{aligned}
& 30=\alpha_{1}(6)^{0}+\alpha_{2} \\
& 30=\alpha_{1}(1)+\alpha_{2} \\
& 30=\alpha_{1}+\alpha_{2} \quad(*) \\
& 20=\alpha_{1}(6)^{1}+\alpha_{2} \\
& 20=6 \alpha_{1}+\alpha_{2} \quad(* *)
\end{aligned}
$$

Solving $\left({ }^{*}\right)$ and $\left({ }^{* *}\right)$ for α_{1} and α_{2}, we get $\alpha_{1}=-2$ and $\alpha_{2}=32$.
Answer: $a_{n}=(-2) 6^{n}+32 \quad(n \geq 0)$
4)

$$
\begin{aligned}
a_{n} & =a_{n-1}+3 n+2 \\
& =\left[a_{n-2}+3(n-1)+2\right]+3 n+2 \\
& =a_{n-2}+3(n-1)+3 n+2+2 \\
& =\left[a_{n-3}+3(n-2)+2\right]+3(n-1)+3 n+2+2 \\
& =a_{n-3}+3(n-2)+3(n-1)+3 n+2+2+2 \\
& \ldots \\
& =a_{0}+3(1)+3(2)+\ldots+3 n+\underbrace{2+2+\ldots+2}_{n \text { terms }} \\
& =5+3(1+2+\ldots+n)+2 n \\
& =5+3 \frac{n(n+1)}{2}+2 n
\end{aligned}
$$

(This can be simplified further.)
5)

Notation: " E " = "even". "-" means "any digit".
Let A be the set of decimal strings of the form "EEE--".
Let B be the set of decimal strings of the form "0----".
Let C be the set of decimal strings of the form "--EEE".
$|A|: \quad \frac{5}{E} \frac{5}{E} \frac{5}{E} \frac{10}{\text { any }} \frac{10}{\text { any }} \quad$ Product $=12,500$
$|B|: \quad \frac{1}{\text { "0" }} \frac{10}{\text { any }} \frac{10}{\text { any }} \frac{10}{\text { any }} \frac{10}{\text { any }} \quad$ Product $=10,000$
$|C|: \quad \frac{10}{\text { any }} \frac{10}{\text { any }} \frac{5}{E} \frac{5}{E} \frac{5}{E} \quad$ Product $=12,500$ (symmetric to $|A|$ case)
$|A \cap B|: \quad \frac{1}{" 0 "} \frac{5}{E} \frac{5}{E} \frac{10}{\text { any }} \frac{10}{\text { any }} \quad$ Product $=2,500$
$|B \cap C|: \quad \frac{1}{{ }^{0 "} 0} \frac{10}{\text { any }} \frac{5}{E} \frac{5}{E} \frac{5}{E} \quad$ Product $=1,250$
$|A \cap C|: \quad \frac{5}{E} \frac{5}{E} \frac{5}{E} \frac{5}{E} \frac{5}{E} \quad$ Product $=3,125$
$|A \cap B \cap C|: \quad \frac{1}{" 0 "} \frac{5}{E} \frac{5}{E} \frac{5}{E} \frac{5}{E} \quad$ Product $=625$
So, $|A \cup B \cup C|=12,500+10,000+12,500-2,500-1,250-3,125+625$
Answer: 28,750.

