MATH 245: OUIZ 6 SOLUTIONS

1) Let a_n = the number of bit strings of length n with at least one occurrence of "1111". Consider the following disjoint cases:

Case 1:
$$0_{\underbrace{\text{length } n-1}}$$
 a_{n-1} possibilities

Case 2:
$$10_{\underbrace{\text{length } n-2}}$$
 a_{n-2} possibilities

Case 3: 110
$$a_{n-3}$$
 possibilities

Case 4: 1110
$$a_{n-4}$$
 possibilities

Case 5: 1111
$$\underbrace{\text{Length } n-4}$$
 2ⁿ⁻⁴ possibilities, since the rest of the string can be any sequence of *n*-4 bits.

Answer:
$$a_n = a_{n-1} + a_{n-2} + a_{n-3} + a_{n-4} + 2^{n-4}$$

2) a) Let a_n = the number of decimal strings of length n with no occurrences of "000".

Case 1:
$$\frac{9 \text{ possibilities}}{\text{can be } 1 - 9}$$
 $\underbrace{\qquad}_{\text{length } n-1}$ $9a_{n-1}$ possibilities

Case 2:
$$\frac{1}{0}$$
 $\frac{9}{\text{can be 1-9}}$ $\underbrace{\qquad \qquad \qquad }_{\text{length } n-2}$ 9 a_{n-2} possibilities

Answer:
$$a_n = 9a_{n-1} + 9a_{n-2} + 9a_{n-3}$$

b) There are $10^3 = 1000$ decimal strings of length 3, and only one contains "000", namely "000", itself. Answer: 999.

c)

It might be a better idea to start off by counting the number of 4-length decimal strings that <u>do</u> contain "000".

Let A be the set of decimal strings of the form "000_". |A| = 10, since there are 10 ways to fill in "_".

Let B be the set of decimal strings of the form " $_000$ ". |B| = 10, since there are 10 ways to fill in " $_$ ".

There is exactly one string in both sets that is being double-counted, namely "0000".

So,
$$|A \cup B| = |A| + |B| - |A \cap B| = 10 + 10 - 1 = 19$$
.

There are a total of $10^4 = 10,000$ decimal strings of length 4, so the answer is 10,000 - 19 = 9981.

3)
$$a_{n} = 7a_{n-1} - 6a_{n-2}$$

$$a_{n} - 7a_{n-1} + 6a_{n-2} = 0$$

$$r^{2} - 7r + 6 = 0$$

$$(r - 6)(r - 1) = 0$$

There are two roots: r = 6 and r = 1.

Solutions to the recurrence relation:

$$a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$$

$$a_n = \alpha_1 (6)^n + \alpha_2 (1)^n$$

$$a_n = \alpha_1 (6)^n + \alpha_2$$

Use the initial conditions:

$$30 = \alpha_{1}(6)^{0} + \alpha_{2}$$

$$30 = \alpha_{1}(1) + \alpha_{2}$$

$$30 = \alpha_{1} + \alpha_{2} \quad (*)$$

$$20 = \alpha_{1}(6)^{1} + \alpha_{2}$$

$$20 = 6\alpha_{1} + \alpha_{2} \quad (**)$$

Solving (*) and (**) for α_1 and α_2 , we get $\alpha_1 = -2$ and $\alpha_2 = 32$.

Answer: $a_n = (-2)6^n + 32 \quad (n \ge 0)$

4)
$$a_{n} = a_{n-1} + 3n + 2$$

$$= [a_{n-2} + 3(n-1) + 2] + 3n + 2$$

$$= a_{n-2} + 3(n-1) + 3n + 2 + 2$$

$$= [a_{n-3} + 3(n-2) + 2] + 3(n-1) + 3n + 2 + 2$$

$$= a_{n-3} + 3(n-2) + 3(n-1) + 3n + 2 + 2 + 2$$
...
$$= a_{0} + 3(1) + 3(2) + \dots + 3n + 2 + 2 + \dots + 2$$

$$= 5 + 3(1 + 2 + \dots + n) + 2n$$

$$= 5 + 3\frac{n(n+1)}{2} + 2n$$
(This can be simplified further.)

Notation: "E" = "even". "-" means "any digit".

Let A be the set of decimal strings of the form "EEE--".

Let B be the set of decimal strings of the form "0----".

Let C be the set of decimal strings of the form "--EEE".

|A|:
$$\frac{5}{E} \frac{5}{E} \frac{5}{E} \frac{10}{\text{any}} \frac{10}{\text{any}}$$
 Product = 12,500

|B|:
$$\frac{1}{0} = \frac{10}{\text{any}} = \frac{10}{\text{any}} = \frac{10}{\text{any}} = \frac{10}{\text{any}}$$
 Product = 10,000

|C|:
$$\frac{10}{\text{any any}} \frac{10}{E} \frac{5}{E} \frac{5}{E}$$
 Product = 12,500 (symmetric to |A| case)

$$|A \cap B|$$
: $\frac{1}{0} = \frac{5}{E} = \frac{5}{E} = \frac{10}{\text{any}} = \frac{10}{\text{any}}$ Product = 2,500

$$|B \cap C|$$
: $\frac{1}{0} \frac{10}{\text{any } E} \frac{5}{E} \frac{5}{E}$ Product = 1,250

$$|A \cap C|$$
: $\frac{5}{E} \frac{5}{E} \frac{5}{E} \frac{5}{E} \frac{5}{E}$ Product = 3,125

$$|A \cap B \cap C|$$
: $\frac{1}{"0"} \frac{5}{E} \frac{5}{E} \frac{5}{E} \frac{5}{E}$ Product = 625

So, $|A \cup B \cup C| = 12,500 + 10,000 + 12,500 - 2,500 - 1,250 - 3,125 + 625$ Answer: 28,750.