FINAL

MATH 252 – FALL 2006 – KUNIYUKI 60 POINTS TOTAL (15 PROBLEMS; 4 POINTS EACH)

No books allowed. An appropriate sheet of notes and a scientific calculator are allowed.

1) What is the geometric definition of the dot product of two vectors \mathbf{a} and \mathbf{b} in V_n ? Circle one:

a)
$$\mathbf{a} \cdot \mathbf{b} = ||\mathbf{a}|| ||\mathbf{b}|| \cos \theta$$

b)
$$\mathbf{a} \cdot \mathbf{b} = ||\mathbf{a}|| ||\mathbf{b}|| \sin \theta$$

c)
$$\mathbf{a} \cdot \mathbf{b} = ||\mathbf{a}|| ||\mathbf{b}|| \tan \theta$$

2) Give symmetric equations for the line in *xyz*-space that passes through the point (7, 4, -2) and that has direction vector $3\mathbf{i} - 2\mathbf{j} + \mathbf{k}$.

- 3) The graph of $3x^2 + 4y^2 z = 0$ in xyz-space is ... (circle one):
 - a) A Cone
 - b) An Ellipsoid
 - c) An Elliptic Paraboloid
 - d) A Hyperbolic Paraboloid
 - e) A Hyperboloid of One Sheet
 - f) A Hyperboloid of Two Sheets

4) A plane curve C is parameterized by \mathbf{r} , a smooth vector-valued function of t, from t = a to t = b, where a < b. The curve does not overlap itself. Which of the following will give you the arc length of C? Circle one:

a)
$$\int_a^b \|\mathbf{r}(t)\| dt$$

b)
$$\int_a^b \|\mathbf{r}'(t)\| dt$$

a)
$$\int_a^b \| \mathbf{r}(t) \| dt$$
 b) $\int_a^b \| \mathbf{r}'(t) \| dt$ c) $\int_a^b \| \mathbf{r}''(t) \| dt$

5) True or False: If v is a "nice" everywhere differentiable vector-valued function of t, $D_t [\mathbf{v}(t) \bullet \mathbf{v}(t)] = 2 [\mathbf{v}'(t) \bullet \mathbf{v}(t)]$. Circle one:

True

False

6) Two of the following are expressions for curvature that we have covered in class. Circle those two, and only those two.

a)
$$\left\| \frac{d\mathbf{r}}{ds} \right\|$$

b)
$$\left\| \frac{d\mathbf{T}}{ds} \right\|$$

c)
$$\left\| \frac{d\mathbf{N}}{ds} \right\|$$

d)
$$\frac{\|\mathbf{r}(t) \times \mathbf{r}'(t)\|}{\|\mathbf{r}(t)\|^3}$$

d)
$$\frac{\|\mathbf{r}(t)\times\mathbf{r}'(t)\|}{\|\mathbf{r}(t)\|^3}$$
 e) $\frac{\|\mathbf{r}'(t)\times\mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3}$

7) Let f be a "nice" differentiable function of x and y. Give the limit definition of $f_{v}(x,y)$.

8) Let *S* be the graph of F(x,y,z) = 0, where $\nabla F(x,y,z)$ is continuous. If $\nabla F(2,-1,3) = \langle 6,2,3 \rangle$, write an equation for the tangent plane to *S* at (2,-1,3).

- 9) Let f be a "nice" function of x and y with continuous second-order partial derivatives. Let $D = f_{xx} f_{yy} (f_{xy})^2$. The point (-1, -3) is a critical point of f where D = -20 and $f_{xx} = 5$. Which one of the following does f have at (-1, -3)? Circle one:
 - a) A local maximum
 - b) A local minimum
 - c) A saddle point
- 10) Express dV in cylindrical coordinates.
- 11) Express dV in spherical coordinates.
- 12) If x = 2u 3v and y = 3u + 4v, find the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$.

Hints: The Jacobian is computed using a determinant. Your answer will be a number.

Consider the work applied by a force $\mathbf{F}(x,y) = \langle M(x,y), N(x,y) \rangle$ on a 13) particle traveling along a curve C. Three of the following formulas are work formulas that we have covered in class. Circle those three.

a)
$$\int_C M dx + N dy$$
 b) $\int_C \mathbf{F} \cdot \mathbf{r'}(t) dt$ c) $\int_C \mathbf{F} \cdot \mathbf{N} ds$

b)
$$\int_C \mathbf{F} \cdot \mathbf{r'}(t) dt$$

c)
$$\int_C \mathbf{F} \cdot \mathbf{N} \, ds$$

d)
$$\int_C \mathbf{F} \cdot \mathbf{T} \, ds$$
 e) $\int_C \mathbf{F} \cdot d\mathbf{T}$

e)
$$\int_C \mathbf{F} \cdot d\mathbf{T}$$

- Which two of the following each guarantees that a vector field **F** is 14) conservative throughout \mathbb{R}^3 ? Circle two:
 - a) If C is any circle in \mathbf{R}^3 that encloses the origin, $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$.
 - b) curl $\mathbf{F} = \mathbf{0}$ throughout \mathbf{R}^3 .
 - c) $\mathbf{F} = \nabla f$ for some scalar function f throughout \mathbf{R}^3 .
- Assume that the hypotheses of Green's Theorem (as stated in my 18.4) 15) Notes) are satisfied. In particular, C is a piecewise smooth simple closed curve in the xy-plane that is the boundary of R, which consists of C and its interior. D is an open region containing R. $\mathbf{F}(x,y) = \langle M(x,y), N(x,y) \rangle$, where *M* and *N* are "nice" in *D*. Fill in the blank:

According to Green's Theorem,

$$\oint_C \mathbf{F} \bullet d\mathbf{r}, \text{ or } \oint_C M dx + N dy = \underline{\hspace{1cm}}.$$