\qquad

```
FINAL
MATH 252 - FALL 2008 - KUNIYUKI 60 POINTS TOTAL (15 PROBLEMS; 4 POINTS EACH)
```

No books allowed. An appropriate sheet of notes and a scientific calculator are allowed.

1) If \mathbf{a} and \mathbf{b} are vectors in V_{2} such that $\mathbf{a} \bullet \mathbf{b}<0$, which of the following is true? Box in the best answer:
a) The angle between \mathbf{a} and \mathbf{b} is in $\left[0^{\circ}, 90^{\circ}\right)$.
b) The angle between \mathbf{a} and \mathbf{b} is in $\left(90^{\circ}, 180^{\circ}\right]$.
c) $\mathbf{a} \bullet \mathbf{b}$ tells us nothing about the angle between \mathbf{a} and \mathbf{b}.
2) Write an equation for the plane in $x y z$-space that is parallel to the plane with equation $3 x-2 y+7 z=10$ and that contains the point $(4,-1,8)$.
3) Consider the graph of $4 x^{2}-5 y^{2}-6 z^{2}=3$ in $x y z$-space. The trace of the graph in the plane $x=10$ is \ldots (Box in one):
a) An Ellipse
b) A Hyperbola
c) A Parabola
4) If \mathbf{r} is a vector-valued position function of t that is smooth and twice differentiable for all real t, which one of the following will be true for all real t ? Box in one:
a) $\mathbf{r}(t) \perp \mathbf{T}(t)$
b) $\mathbf{r}^{\prime}(t) \perp \mathbf{T}(t)$
c) $\mathbf{r}^{\prime}(t) \| \mathbf{T}(t)$
5) If the curvature at a point on a curve (in the real plane) is 10 , what is the radius of curvature at that point?
6) Fill in the blank: The level surface of $f(x, y, z)=4 x^{2}+9 y^{2}-z^{2}, k=4$ is \qquad . (Pick a letter from below.)
A. A Sphere or Ellipsoid
B. A Hyperboloid of One Sheet
C. A Hyperboloid of Two Sheets
D. A Cone
E. A Circular or Elliptic Paraboloid
F. A Hyperbolic Paraboloid
G. A Right Circular or Elliptic Cylinder
H. A Plane
I. A Line (a "degenerate" surface)
J. A Point (a "degenerate" surface)
K. NONE (no surface)
7) Assume that f is a differentiable function of x, y, and z. Give the limit definition of $f_{z}(x, y, z)$.
8) Let S be the graph of $F(x, y, z)=0$, where $\nabla F(x, y, z)$ is continuous. Assuming that $\nabla F(-2,4,1)=\langle 8,1,-3\rangle$, write parametric equations for the normal line to S at $(-2,4,1)$.
9) Assume that f is a function of x and y with continuous second-order partial derivatives. Let $D=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}$. The point $(2,-3)$ is a critical point of f where $D=40$ and $f_{x x}=2$. Which one of the following does f have at $(2,-3)$? Box in one:
a) A local maximum
b) A local minimum
c) A saddle point
10) The graph of $z=r(r \geq 0)$ in $x y z$-space is part of \ldots (Box in one):
A cone A circular cylinder A plane A sphere
11) Express $d V$ in spherical coordinates.
12) If $x=4 u+3 v$ and $y=2 u-v$, find the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$.
13) Consider a vector field \mathbf{F} that is "nice" throughout \mathbf{R}^{3}; here, "nice" means that the partial derivatives exist for the $\mathbf{i}-, \mathbf{j}$-, and \mathbf{k}-components of \mathbf{F} throughout \mathbf{R}^{3}. Assume that, at the origin, $\operatorname{div} \mathbf{F}>0$. Which of the following is at the origin? (Optional Hint: Try to find a "nice" \mathbf{F} for which $\operatorname{div} \mathbf{F}>0$ throughout \mathbf{R}^{3}, and visualize it.) Box in one:
A sink
A source
14) Consider the work applied by a force $\mathbf{F}(x, y)=\langle M(x, y), N(x, y)\rangle$ on a particle traveling along a curve C. Two of the following formulas are work formulas that we have covered in class. Box in those two.
a) $\int_{C} \mathbf{F} \bullet \mathbf{r}(t) d t$
b) $\int_{C} \mathbf{F} \bullet \mathbf{T}^{\prime}(t) d t$
c) $\int_{C} \mathbf{F} \bullet \mathbf{T} d s$
d) $\int_{C} M d x+N d y$
e) $\int_{C} \mathbf{F} \bullet \mathbf{N} d s$
15) If a vector field \mathbf{F} is continuous in \mathbf{R}^{3}, under what conditions will we be guaranteed that the work integral $\int_{C} \mathbf{F} \bullet d \mathbf{r}=0$? Box in one of a), b), or c): (Assume that a circular path corresponds to exactly one revolution.)
a) $\quad \mathbf{F}$ is conservative in \mathbf{R}^{3}, and C is piecewise smooth.
b) $\quad \operatorname{div} \mathbf{F}=0$ throughout \mathbf{R}^{3}, and C is a circle in \mathbf{R}^{3}.
c) $\quad \mathbf{F}=\nabla f$ throughout \mathbf{R}^{3}, where $f(x, y, z)=x y z$, and C is a circle in \mathbf{R}^{3}.
