FINAL

MATH 252 – FALL 2008 – KUNIYUKI 60 POINTS TOTAL (15 PROBLEMS; 4 POINTS EACH)

No books allowed. An appropriate sheet of notes and a scientific calculator are allowed.

- 1) If **a** and **b** are vectors in V_2 such that $\mathbf{a} \cdot \mathbf{b} < 0$, which of the following is true? Box in the best answer:
 - a) The angle between **a** and **b** is in $[0^{\circ}, 90^{\circ})$.
 - b) The angle between **a** and **b** is in $(90^{\circ}, 180^{\circ})$.
 - c) $\mathbf{a} \cdot \mathbf{b}$ tells us nothing about the angle between \mathbf{a} and \mathbf{b} .
- 2) Write an equation for the plane in xyz-space that is parallel to the plane with equation 3x 2y + 7z = 10 and that contains the point (4, -1, 8).

- 3) Consider the graph of $4x^2 5y^2 6z^2 = 3$ in xyz-space. The trace of the graph in the plane x = 10 is ... (Box in one):
 - a) An Ellipse
 - b) A Hyperbola
 - c) A Parabola

4) If **r** is a vector-valued position function of *t* that is smooth and twice differentiable for all real *t*, which one of the following will be true for all real *t*? Box in one:

a)
$$\mathbf{r}(t) \perp \mathbf{T}(t)$$

b)
$$\mathbf{r}'(t) \perp \mathbf{T}(t)$$

c)
$$\mathbf{r}'(t) \| \mathbf{T}(t)$$

- 5) If the curvature at a point on a curve (in the real plane) is 10, what is the radius of curvature at that point?
- 6) Fill in the blank: The level surface of $f(x, y, z) = 4x^2 + 9y^2 z^2$, k = 4 is _____. (Pick a letter from below.)
 - A. A Sphere or Ellipsoid
 - B. A Hyperboloid of One Sheet
 - C. A Hyperboloid of Two Sheets
 - D. A Cone
 - E. A Circular or Elliptic Paraboloid
 - F. A Hyperbolic Paraboloid
 - G. A Right Circular or Elliptic Cylinder
 - H. A Plane
 - I. A Line (a "degenerate" surface)
 - J. A Point (a "degenerate" surface)
 - K. NONE (no surface)
- 7) Assume that f is a differentiable function of x, y, and z. Give the limit definition of $f_z(x, y, z)$.

8) Let *S* be the graph of F(x, y, z) = 0, where $\nabla F(x, y, z)$ is continuous. Assuming that $\nabla F(-2, 4, 1) = \langle 8, 1, -3 \rangle$, write parametric equations for the normal line to *S* at (-2, 4, 1).

- 9) Assume that f is a function of x and y with continuous second-order partial derivatives. Let $D = f_{xx} f_{yy} (f_{xy})^2$. The point (2, -3) is a critical point of f where D = 40 and $f_{xx} = 2$. Which one of the following does f have at (2, -3)? Box in one:
 - a) A local maximum
 - b) A local minimum
 - c) A saddle point
- 10) The graph of $z = r \ (r \ge 0)$ in xyz-space is part of ... (Box in one):

A cone A circular cylinder A plane A sphere

- 11) Express dV in spherical coordinates.
- 12) If x = 4u + 3v and y = 2u v, find the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$.

Consider a vector field \mathbf{F} that is "nice" throughout \mathbf{R}^3 ; here, "nice" means 13) that the partial derivatives exist for the i-, j-, and k-components of F throughout \mathbb{R}^3 . Assume that, at the origin, div $\mathbb{F} > 0$. Which of the following is at the origin? (Optional Hint: Try to find a "nice" F for which div $\mathbf{F} > 0$ throughout \mathbf{R}^3 , and visualize it.) Box in one:

> A sink A source

Consider the work applied by a force $\mathbf{F}(x,y) = \langle M(x,y), N(x,y) \rangle$ on a 14) particle traveling along a curve C. Two of the following formulas are work formulas that we have covered in class. Box in those two.

a)
$$\int_C \mathbf{F} \cdot \mathbf{r}(t) dt$$

a)
$$\int_C \mathbf{F} \cdot \mathbf{r}(t) dt$$
 b) $\int_C \mathbf{F} \cdot \mathbf{T}'(t) dt$ c) $\int_C \mathbf{F} \cdot \mathbf{T} ds$

c)
$$\int_C \mathbf{F} \cdot \mathbf{T} \, ds$$

d)
$$\int_C M dx + N dy$$
 e) $\int_C \mathbf{F} \cdot \mathbf{N} ds$

e)
$$\int_C \mathbf{F} \cdot \mathbf{N} \, ds$$

- If a vector field \mathbf{F} is continuous in \mathbf{R}^3 , under what conditions will we be 15) guaranteed that the work integral $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$? Box in one of a), b), or c): (Assume that a circular path corresponds to exactly one revolution.)
 - \mathbf{F} is conservative in \mathbf{R}^3 , and C is piecewise smooth. a)
 - div $\mathbf{F} = 0$ throughout \mathbf{R}^3 , and C is a circle in \mathbf{R}^3 . b)
 - $\mathbf{F} = \nabla f$ throughout \mathbf{R}^3 , where f(x, y, z) = xyz, and c) C is a circle in \mathbb{R}^3 .