FLOW LINES (Streamlines)

Author: Dr. Parvini

Determining the flow lines (also known as field lines, streamlines, integral curves) of a vector field \vec{F} usually amounts to solving a differential equation or a system of differential equations.

A curve \boldsymbol{C} described by $\vec{r}(t)$ is a flow line (integral curve) of vector field \vec{F} if:

$$
\overrightarrow{\boldsymbol{r}}^{\prime}(\boldsymbol{t})=\overrightarrow{\boldsymbol{F}}(\overrightarrow{\boldsymbol{r}}(\boldsymbol{t}))
$$

[This means for each point $P=\vec{r}(t)$ of C, the vector field $\vec{F}(P)$ is tangent to the flow line at P.]
Example -1: \quad Determine the equation of flow lines or field lines of $\vec{F}(x, y)=\langle 1, y\rangle$.
We want $\vec{r}(t)=\langle x(t), y(t)\rangle$ such that:

$$
\begin{aligned}
\vec{r}^{\prime}(t) & =\vec{F}(\vec{r}(t)) \\
\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle & =\langle 1, y(t)\rangle
\end{aligned}
$$

Equating the components of the two vectors yields:
$\left\{\begin{array}{c}x^{\prime}(t)=1 \\ y^{\prime}(t)=y(t)\end{array}\right.$ Solve the first differential equation, $\int x^{\prime}(t) d t=\int 1 d t$ or $x(t)=t+C_{1}$.
To solve the second differential equations:

$$
\begin{array}{ll}
\begin{array}{l}
y^{\prime}(t)-y(t)=0 \\
\frac{d y}{d t}=y(t)
\end{array} & \text { Using separation of variables: } \quad \int \frac{d y}{y}=\int d t \xrightarrow{\text { yields }} \ln |y|=t+C_{2} \\
& |y|=e^{t+C_{2}} \text { or } y= \pm e^{t+C_{2}}=C_{3} e^{t} .
\end{array}
$$

Substitute for t in $x(t)=t+C_{1}$ into the equation above: $y=C_{3} e^{x-C_{1}}=C_{3} e^{-C_{1}} \cdot e^{x}=C e^{x}$.
So that the flow lines of the vector field $\vec{F}(x, y)=\langle 1, y\rangle$ are graphs of the equation $\boldsymbol{y}=\boldsymbol{C} \boldsymbol{e}^{\boldsymbol{x}}$ where C is a constant.
[Note: A curve that passes through \vec{F} is called a line whether or not it is straight.]

A computer generated graph of the flow lines is given below:

Flow lines of vector filed $\overrightarrow{\boldsymbol{F}}(\boldsymbol{x}, \boldsymbol{y})=\langle\mathbf{1}, \boldsymbol{y}\rangle$ are given by: $\boldsymbol{y}=\boldsymbol{C} \boldsymbol{e}^{\boldsymbol{x}}$ where C is a constant.

Example - 2: Determine the flow lines of the vector field: $\vec{F}(x, y)=\langle-y, x\rangle$.
We want $\vec{r}(t)=\langle x(t), y(t)\rangle$ such that:

$$
\begin{array}{clc}
\vec{r}^{\prime}(t) & = & \vec{F}(\vec{r}(t)) \\
\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle & = & \langle-y(t), x(t)\rangle
\end{array}
$$

Equating the components of the vectors above yields the following system of differential equations,

$$
\left\{\begin{array}{c}
x^{\prime}(t)=-y(t) \\
y^{\prime}(t)=x(t)
\end{array}\right.
$$

Differentiate the first equation with respect to $t: x^{\prime \prime}(t)=-y^{\prime}(t)=x(t)$

Let $x(t)=a \cos t+b \sin t$ from which $x^{\prime}(t)=-a \sin t+b \cos t$.

From the first differential equation, above in the system we get:
$y(t)=-x^{\prime}(t)=-b \cos t+a \sin t$
so that:

$$
\vec{r}(t)=\langle a \cos t+b \sin t,-b \cos t+a \sin t\rangle \quad 0 \leq t \leq 2 \pi
$$

If $\mathrm{B}=0$, then: $\vec{r}(t)=\langle a \cos t, a \sin t\rangle$ is the counterclockwise parameterization of a circle of radius $|a|$.

Otherwise, $|\vec{r}(t)|=|\langle a \cos t+b \sin t,-b \cos t+a \sin t\rangle|=\sqrt{a^{2}+b^{2}}$.
(details omitted) parameterizes a circle of radius $\sqrt{a^{2}+b^{2}}$.

A computer generated graph of the flow lines is given below:

Flow lines of vector filed $\overrightarrow{\boldsymbol{F}}(\boldsymbol{x}, \boldsymbol{y})=\langle-\boldsymbol{y}, \boldsymbol{x}\rangle$ are given by the parametric equation:

$$
\vec{r}(t)=\langle a \cos t+b \sin t,-b \cos t+a \sin t\rangle \quad 0 \leq t \leq 2 \pi .
$$

