FLOW LINES (Streamlines)

Author: Dr. Parvini

Determining the flow lines (also known as **field lines, streamlines, integral curves**) of a vector field \vec{F} usually amounts to solving a differential equation or a system of differential equations.

A curve ${\it C}$ described by $\vec{r}(t)$ is a flow line (integral curve) of vector field \vec{F} if:

$$\vec{r}'(t) = \vec{F}(\vec{r}(t))$$

[This means for each point $P = \vec{r}(t)$ of \vec{c} , the vector field $\vec{F}(P)$ is tangent to the flow line at P.]

<u>Example -1:</u> Determine the equation of flow lines or field lines of $\vec{F}(x,y) = \langle 1,y \rangle$.

We want $\vec{r}(t) = \langle x(t), y(t) \rangle$ such that:

$$\vec{r}'(t) = \vec{F}(\vec{r}(t))$$

 $\langle x'(t), y'(t) \rangle = \langle 1, y(t) \rangle$

Equating the components of the two vectors yields:

$$\begin{cases} x'(t) = 1 \\ y'(t) = y(t) \end{cases}$$
 Solve the first differential equation,
$$\int x'(t)dt = \int 1 \, dt \ \ or \ x(t) = t + \mathcal{C}_1.$$

To solve the second differential equations:

$$y'(t) - y(t) = 0$$
 Using separation of variables: $\int \frac{dy}{y} = \int dt \xrightarrow{yields} \ln|y| = t + C_2$

$$|y| = e^{t+C_2}$$
 or $y = \pm e^{t+C_2} = C_3 e^t$.

Substitute for t in $x(t) = t + C_1$ into the equation above: $y = C_3 e^{x - C_1} = C_3 e^{-C_1}$. $e^x = C e^x$.

So that the flow lines of the vector field $\vec{F}(x,y) = \langle 1,y \rangle$ are graphs of the equation

 $y = Ce^x$ where C is a constant.

[Note: A curve that passes through \vec{F} is called a **line** whether or not it is straight.]

A computer generated graph of the flow lines is given below:

Flow lines of vector filed $\vec{F}(x,y) = \langle 1,y \rangle$ are given by: $y = Ce^x$ where C is a constant.

<u>Example – 2:</u> Determine the flow lines of the vector field: $\vec{F}(x,y) = \langle -y,x \rangle$.

We want $\vec{r}(t) = \langle x(t), y(t) \rangle$ such that:

$$\vec{r}'(t) = \vec{F}(\vec{r}(t))$$

 $\langle x'(t), y'(t) \rangle = \langle -y(t), x(t) \rangle$

Equating the components of the vectors above yields the following system of differential equations,

$$\begin{cases} x'(t) = -y(t) \\ y'(t) = x(t) \end{cases}$$

Differentiate the first equation with respect to t: x''(t) = -y'(t) = x(t)

Let $x(t) = a \cos t + b \sin t$ from which $x'(t) = -a \sin t + b \cos t$.

From the first differential equation, above in the system we get:

$$y(t) = -x'(t) = -b \cos t + a \sin t$$

so that: $\vec{r}(t) = \langle a \cos t + b \sin t, -b \cos t + a \sin t \rangle$ $0 \le t \le 2\pi$

If B=0, then: $\vec{r}(t) = \langle a \ cost \ , \ a \ sint \rangle$ is the counterclockwise parameterization of a circle of radius |a|.

Otherwise, $|\vec{r}(t)| = |\langle a \cos t + b \sin t, -b \cos t + a \sin t \rangle| = \sqrt{a^2 + b^2}$.

(details omitted) parameterizes a circle of radius $\sqrt{a^2 + b^2}$.

A computer generated graph of the flow lines is given below:

Flow lines of vector filed $\vec{F}(x,y) = \langle -y,x \rangle$ are given by the parametric equation:

$$\vec{r}(t) = \langle a \cos t + b \sin t, -b \cos t + a \sin t \rangle$$
 $0 \le t \le 2\pi$.