Find $\frac{\partial}{\partial v}$ of the following (remember, x acts like a constant):

1)
$$e^{xx}y^2$$

1)
$$e^{xx}y^2$$

2) $y^2e^{x^2y^3}$

$$3) \frac{y^2}{\ln y}$$

4)
$$\cos^{3}(xy^{2})$$

5)
$$tan^{-1}(xy^2)$$

6)
$$\sin^3 y$$

7)
$$\sin[y^3]$$

8)
$$\ln \sqrt{x^2 + y^2}$$

Answers (not necessarily simplified):

1)
$$\frac{\partial}{\partial y} \left[e^{xx} y^2 \right] = e^{xx} (2y)$$

 e^{xx} acts like a constant multiplier for y^2

2)
$$\frac{\partial}{\partial y} \left[y^2 e^{x^2 y^3} \right] = (2y) e^{x^2 y^3} + y^2 \left[e^{x^2 y^3} \bullet \frac{\partial}{\partial y} \left(x^2 y^3 \right) \right]$$
$$= (2y) e^{x^2 y^3} + y^2 \left[e^{x^2 y^3} \bullet x^2 \left(3y^2 \right) \right]$$

Product rule and chain rule

3)
$$\frac{\partial}{\partial y} \left(\frac{y^2}{\ln y} \right) = \frac{(\ln y)(2y) - \left(y^2 \right) \left(\frac{1}{y} \right)}{\left(\ln y \right)^2}$$

Quotient rule: $\frac{\text{Lo} \bullet D(\text{Hi}) - \text{Hi} \bullet D(\text{Lo})}{\text{Square of below}}$

As in 2), write $\frac{\partial}{\partial y}$ if you need the chain rule.

4)
$$\frac{\partial}{\partial y} \left[\cos^3(xy^2) \right] = \frac{\partial}{\partial y} \left[\left[\cos(xy^2) \right]^3 \right]$$
 (Clearer notation)

$$= 3 \left[\cos(xy^2) \right]^2 \bullet \frac{\partial}{\partial y} \left[\cos(xy^2) \right]$$

$$= 3 \left[\cos(xy^2) \right]^2 \bullet \left[-\sin(xy^2) \bullet \frac{\partial}{\partial y} (xy^2) \right]$$

$$= 3 \left[\cos(xy^2) \right]^2 \bullet \left[-\sin(xy^2) \bullet x(2y) \right]$$

Trig powers, power rule, chain rule (twice!)

5)
$$\frac{\partial}{\partial y} \left[\tan^{-1} \left(xy^{2} \right) \right] = \frac{1}{1 + \left(xy^{2} \right)^{2}} \bullet \frac{\partial}{\partial y} \left(xy^{2} \right)$$

$$= \frac{1}{1 + \left(xy^{2} \right)^{2}} \bullet x \left(2y \right)$$

$$1 + \left(xy^{2} \right)^{2}$$
Rule:
$$\frac{\partial}{\partial y} \tan^{-1} \left(blah \right) = \frac{1}{1 + blah^{2}} \bullet \frac{\partial}{\partial y} \left(blah \right)$$

6)
$$\frac{\partial}{\partial y} \left(\sin^3 y \right) = \left(\sin y \right)^3$$
 (Clearer notation)
= $3(\sin y)^2 \cdot \frac{\partial}{\partial y} \left(\sin y \right)$
= $3(\sin y)^2 \cdot \cos y$

7)
$$\frac{\partial}{\partial y} \left[\sin(y^3) \right] = \cos(y^3) \bullet \frac{\partial}{\partial y} \left(y^3 \right)$$

$$= \cos(y^3) \bullet 3y^2$$

As opposed to 6), we don@need the power rule here until the end.

8)
$$\frac{\partial}{\partial y} \left(\ln \sqrt{x^2 + y^2} \right) = \frac{1}{\sqrt{x^2 + y^2}} \bullet \frac{\partial}{\partial y} \left(\sqrt{x^2 + y^2} \right)$$
$$= \frac{1}{\sqrt{x^2 + y^2}} \bullet \frac{\partial}{\partial y} \left[\left(x^2 + y^2 \right)^{1/2} \right]$$
$$= \frac{1}{\sqrt{x^2 + y^2}} \bullet \frac{1}{2} \left(x^2 + y^2 \right)^{-1/2} \bullet \frac{\partial}{\partial y} \left(x^2 + y^2 \right)$$
$$= \frac{1}{\sqrt{x^2 + y^2}} \bullet \frac{1}{2} \left(x^2 + y^2 \right)^{-1/2} \bullet 2y$$

Rule: $\frac{\partial}{\partial y} \ln(blah) = \frac{1}{blah} \bullet \frac{\partial}{\partial y} \left(blah\right)$

Roots as powers, power rule, chain rule