\qquad

QUIZ 1 (CHAPTER 14)

MATH 252 - FALL 2007 - KUNIYUKI
SCORED OUT OF 125 POINTS \Rightarrow MULTIPLIED BY $0.84 \Rightarrow 105 \%$ POSSIBLE
Show all work, simplify as appropriate, and use "good form and procedure" (as in class). Box in your final answers!
No notes or books allowed. A scientific calculator is allowed.
Clearly mark vectors, as we have done in class. I will use boldface, but you don't! When describing vectors, you may use either \rangle or " $\mathbf{i}-\mathbf{j}-\mathbf{k}$ " notation.
Assume we are in our usual 2- and 3-dimensional Cartesian coordinate systems. Give exact answers, unless otherwise specified.

Check one:
Can you easily print files from the class web site?

Yes. I do not need copies of exam solutions made for me.
No. Please provide me with copies of exam solutions.

USE THE LAST PAGE IF YOU NEED MORE SPACE!

1) Assume that a_{1}, a_{2}, p, and q are real numbers.

Prove that, if $\mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle$, then $(p+q) \mathbf{a}=p \mathbf{a}+q \mathbf{a}$. Show all steps! (10 points)
2) Write an inequality in x, y, and/or z whose graph in our usual three-dimensional $x y z$-coordinate system consists of the sphere of radius 4 centered at the origin and all points inside that sphere. (4 points)
3) Find all real values of c such that the vectors $c \mathbf{i}+10 \mathbf{j}+c \mathbf{k}$ and $c \mathbf{i}-2 \mathbf{j}-\mathbf{k}$ are orthogonal. (8 points)
4) Assume that \mathbf{a} and \mathbf{b} are vectors in V_{n}, where n is some natural number. Using entirely mathematical notation (i.e., don't use words) ... (8 points; 4 points each)
a) Write the Cauchy-Schwarz Inequality.
b) Write the Triangle Inequality.
5) Let \mathbf{a}, \mathbf{b}, and \mathbf{c} be vectors in V_{3}. (4 points total; 2 points each)
a) $(\mathbf{a} \bullet \mathbf{b}) \mathbf{c}$ is $\ldots($ Box in one:)
a scalar a vector neither, or undefined
b) $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})$ is $\ldots($ Box in one: $)$
a scalar
a vector
neither, or undefined
6) Assume that \mathbf{a}, \mathbf{b}, and \mathbf{c} are three nonzero vectors in V_{3} such that $\mathbf{a} \times \mathbf{b}=\mathbf{a} \times \mathbf{c}$. Which of the following must be true? Box in one: (3 points)
i) The vector \mathbf{a} and the vector $\mathbf{b}-\mathbf{c}$ are parallel.
ii) The vector \mathbf{a} and the vector $\mathbf{b}-\mathbf{c}$ are perpendicular (or orthogonal).
iii) $\mathbf{b}=\mathbf{c}$.
7) The line l passes through the points $P(-7,2,0)$ and $Q(4,-1,5)$. (10 points total)
a) Find parametric equations for l.
b) Find symmetric equations for l.
8) Consider the following two lines:

$$
l_{1}:\left\{\begin{array}{l}
x=3+t \\
y=1-2 t \\
z=-5+3 t
\end{array} \quad \text { and } \quad l_{2}:\left\{\begin{array}{l}
x=-2-3 u \\
y=3+4 u \\
z=8-2 u
\end{array} \quad(t, u \in \mathbf{R})\right.\right.
$$

(35 points total)
a) Find the point of intersection between the two lines.
b) Find either one of the two supplementary angles between the given lines. Reminder:

$$
l_{1}:\left\{\begin{array}{l}
x=3+t \\
y=1-2 t \\
z=-5+3 t
\end{array} \quad \text { and } \quad l_{2}:\left\{\begin{array}{l}
x=-2-3 u \\
y=3+4 u \\
z=8-2 u
\end{array} \quad(t, u \in \mathbf{R})\right.\right.
$$

Round off your answer to the nearest tenth of a degree.
c) Find an equation (in x, y, and z) of the plane that contains the two given lines. Reminder:

$$
l_{1}:\left\{\begin{array}{l}
x=3+t \\
y=1-2 t \\
z=-5+3 t
\end{array} \quad \text { and } \quad l_{2}:\left\{\begin{array}{l}
x=-2-3 u \\
y=3+4 u \\
z=8-2 u
\end{array} \quad(t, u \in \mathbf{R})\right.\right.
$$

9) Consider the point $P(7,2,-1)$ and the plane $4 x-3 y+2 z+60=0$. Distance is measured in meters. (16 points total)
a) At what point does the given plane intersect the x-axis? (We will call this point Q.)
b) Find a normal vector for the given plane. (We will call this vector \mathbf{n}.)
c) If we let the vector $\mathbf{p}=\overrightarrow{Q P}$, then the distance between the given point P and the given plane equals: $\left|\operatorname{comp}_{\mathbf{n}} \mathbf{p}\right|$. Use the component formula to find $\left|\operatorname{comp}_{\mathbf{n}} \mathbf{p}\right|$. Round it off to the nearest tenth of a meter.
10) Matching. (12 points total)

Fill in each blank below with one of the following:
A. An Ellipsoid
B. A Hyperboloid of One Sheet
C. A Hyperboloid of Two Sheets
D. A Cone
E. An Elliptic Paraboloid
F. A Hyperbolic Paraboloid
I. The graph of $\frac{1}{2} x^{2}-3 y^{2}-z^{2}=5$ is \qquad .
II. The graph of $x^{2}+7 y^{2}-z=0$ is \qquad .
III. The graph of $4 x^{2}-9 y^{2}+z^{2}=0$ is \qquad .
IV. The graph of $4 x^{2}-y^{2}+11 z^{2}=7$ is \qquad .
11) Consider the graph of $4 x^{2}-y^{2}+11 z^{2}=7$. This was in Problem 10, part IV. Assume that k takes the place of real constants. (12 points total)
a) The axis of the graph is the ... (Box in one:)

$$
x \text {-axis } \quad y \text {-axis } \quad z \text {-axis }
$$

b) The conic traces of the graph in the planes $x=k$ are \ldots (Box in one:)
Ellipses
Hyperbolas
Parabolas
c) The conic traces of the graph in the planes $y=k$ are \ldots (Box in one:)
Ellipses Hyperbolas Parabolas
d) The conic traces of the graph in the planes $z=k$ are ... (Box in one:)
Ellipses Hyperbolas Parabolas
12) Find an equation (in x, y, and z) of the surface obtained by revolving the graph of $4 y^{2}+25 z^{2}=1$ (in the $y z$-plane) about the z-axis. (3 points)

