QUIZ 2 (CHAPTER 15, 16.1, 16.2)

MATH 252 - FALL 2007 - KUNIYUKI
SCORED OUT OF 125 POINTS \Rightarrow MULTIPLIED BY $0.84 \Rightarrow 105 \%$ POSSIBLE
Show all work, simplify as appropriate, and use "good form and procedure" (as in class). Box in your final answers!
No notes or books allowed. A scientific calculator is allowed.
Clearly mark vectors, as we have done in class. I will use boldface, but you don't! When describing vectors or vector-valued functions, you may use either \rangle or " $\mathbf{i}-\mathbf{j}-\mathbf{k}$ " notation.

USE THE BACK OF THIS TEST IF YOU NEED MORE SPACE!!

1) Find the length of the curve parameterized by:

$$
x=t^{2}, \quad y=\frac{\sqrt{5}}{2} t^{2}, \quad z=2 t, \quad 0 \leq t \leq 2
$$

Major Hint (which you may use without proof):
According to the Table of Integrals, if a is a positive real constant,

$$
\int \sqrt{a^{2}+u^{2}} d u=\frac{u}{2} \sqrt{a^{2}+u^{2}}+\frac{a^{2}}{2} \ln \left|u+\sqrt{a^{2}+u^{2}}\right|+C
$$

Leave your answer as a simplified exact answer; do not approximate it using a calculator. You do not have to apply log properties at the end. Distance is measured in meters. Show all work! (20 points)
2) A curve C is parameterized by the vector-valued function (VVF) given by $\mathbf{r}(t)=\left\langle e^{2 t}, 3 t+1, t^{2}\right\rangle$. Find a tangent vector to C at the point $\left(e^{10}, 16,25\right)$. (10 points)
3) Complete the Product Rule for differentiating the dot product of two differentiable vector-valued functions (VVFs) \mathbf{u} and \mathbf{v} :

$$
D_{t}[\mathbf{u}(t) \bullet \mathbf{v}(t)]=
$$

\qquad
(3 points)
4) The velocity of a moving particle is given by $\mathbf{v}(t)=\left\langle 7 e^{t}, 4 \cos t, 3 t^{2}-2\right\rangle$. Find the position vector-valued function (VVF rule) $\mathbf{r}(t)$ if $\mathbf{r}(0)=\langle 1,4,-3\rangle$. (10 points)
5) Find the unit tangent VVF (rule) $\mathbf{T}(t)$ and the principal unit normal VVF (rule) $\mathbf{N}(t)$ for the curve C determined by $\mathbf{r}(t)=\left\langle-6 t, 2 t^{3}\right\rangle$, where $\left.t\right\rangle 0$. Show all work and simplify completely, as we have done in class. Do not use the fact that $\mathbf{T}(t) \perp \mathbf{N}(t)$, and do not eliminate the parameter. Messy and/or undisciplined work may not be graded! (27 points)

Note: When differentiating, avoid using the Product Rule as an alternative to the Quotient Rule, unless you simplify your result to the most compact form!
6) Assume that \mathbf{r} is a position VVF of t in 3-space that is twice differentiable everywhere (i.e., second derivatives exist for all real t). Write a curvature formula we discussed for $\kappa(t)$ that involves a cross product. (4 points)
7) A helical curve C is determined by $\mathbf{r}(t)=\langle 2 \cos t, 2 \sin t, 3 t\rangle$. The curvature at every point on the curve is given by a constant, κ. Find κ. Use your formula from Problem 6), and simplify your answer completely. Show all work! (16 points)
8) Sketch the level curves of $f(x, y)=(x-1)^{2}+y^{2}$ for $k=1,4,9$ on the grid below. Label the curves with their corresponding k-values. Be reasonably accurate. (8 points)

9) What is the graph of $z=(x-1)^{2}+y^{2}$ in $x y z$-space? Problem 8) may help. Box in one: (3 points)
A Cone
A Paraboloid
A Sphere
10) Matching. (9 points total)

Fill in each blank with the best choice in the list below to indicate the level surface of f for the given value of k.
A. A Sphere or Ellipsoid
B. A Hyperboloid of One Sheet
C. A Hyperboloid of Two Sheets
D. A Cone
E. A Circular or Elliptic Paraboloid
F. A Hyperbolic Paraboloid
G. A Right Circular or Elliptic Cylinder
H. A Plane
I. A Line (a "degenerate" surface)
J. A Point (a "degenerate" surface)
K. NONE (no surface)
a) The level surface of $f(x, y, z)=2 x-4 y+5 z, k=10$ is \qquad .
b) The level surface of $f(x, y, z)=x^{2}+y^{2}-z^{2}, k=4$ is \qquad .
c) The level surface of $f(x, y, z)=x^{2}+y^{2}-z^{2}, k=-4$ is \qquad .
11) Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{3}+y^{3}}{5 x^{3}-2 y^{3}}$ does not exist. (10 points)
12) Use polar coordinates to find $\lim _{(x, y) \rightarrow(0,0)} \frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}$. (5 points)

