QUIZ 3 (SECTIONS 16.3-16.9)

MATH 252 – FALL 2008 – KUNIYUKI SCORED OUT OF 125 POINTS \Rightarrow MULTIPLIED BY 0.84 \Rightarrow 105% POSSIBLE

Show all work, simplify as appropriate, and use "good form and procedure" (as in class).

Box in your final answers!

No notes or books allowed. A scientific calculator is allowed.

USE THE BLANK SHEET AT THE END IF YOU NEED MORE SPACE!!

1) Let
$$f(r,t) = t^2 \sin\left(\frac{r}{t}\right)$$
. Find $f_r(r,t)$. (5 points)

2) Let $f(x, y, z) = e^{xyz}$. Find $f_y(x, y, z)$ and use that to find $f_{yz}(x, y, z)$. (8 points)

3) Assume that f is a function of s and t. Write the limit definition of $f_s(s,t)$ using the notation from class. (4 points)

4) Find $\frac{\partial z}{\partial y}$ if z = f(x, y) is a differentiable function described implicitly by the equation $\tan(y^3z) = x^2 - yz$. Use the Calculus III formula given in class. Simplify. (12 points)

5) Let f, g, and h be differentiable functions such that z = f(u, v), u = g(r, s, t), and v = h(r, s, t). Use the Chain Rule to write an expression for $\frac{\partial z}{\partial t}$. (5 points)

- 6) The temperature at any point (x, y) in the *xy*-plane is given by $f(x, y) = 5x^2y + y^3$ in degrees Fahrenheit. Assume *x* and *y* are measured in meters. Give appropriate units in your answers. (30 points total)
 - a) Find the **maximum** rate of change of temperature at the point (2, -3). Approximate your final answer to four significant digits.

6 continued)

Reminder: The temperature at any point (x, y) in the *xy*-plane is given by $f(x, y) = 5x^2y + y^3$ in degrees Fahrenheit. Assume *x* and *y* are measured in meters. Give appropriate units in your answers.

b) Find the rate of change of temperature at (2, -3) in the direction of $4\mathbf{i} + \mathbf{j}$. Approximate your final answer to four significant digits.

Reminder: The temperature at any point (x, y) in the xy-plane is given by $f(x, y) = 5x^2y + y^3$ in degrees Fahrenheit. Assume x and y are measured in meters. Give appropriate units in your answers.

c) Use differentials to linearly approximate the change in temperature if (x, y) changes from (2, -3) to (2.03, -3.01).

d) In what direction does the temperature **decrease** most rapidly at (2, -3)? Give an appropriate non-**0** direction vector.

7) Find an equation for the tangent plane to the graph of the equation $z^3 = x - xy$ at the point P(8, -26, 6). (10 points)

8)	Find all critical points of $f(x, y) = 2x^4 + y^2 - 12xy$, and classify each one as a
	local maximum, a local minimum, or a saddle point. Show all work, as we have done in class. You do <u>not</u> have to find the corresponding function values. (26 points)

9) The function f, where $f(x,y,z) = (x-3)^2 + (y-5)^2 + (z-7)^2$, gives the squared distance of the point (x,y,z) from the point (3,5,7) in xyz-space. Using the method of Lagrange multipliers, find the point on the unit sphere $x^2 + y^2 + z^2 = 1$ that is closest to the point (3,5,7). The point will lie in Octant I; you may use this fact without proof. You do <u>not</u> have to prove that your candidate point corresponds to an absolute minimum of f under the constraint. Give an exact, simplified answer, and rationalize denominators. (25 points)