QUIZ 3 (SECTIONS 16.3-16.9)

MATH 252 - FALL 2008 - KUNIYUKI
SCORED OUT OF 125 POINTS \Rightarrow MULTIPLIED BY $0.84 \Rightarrow 105 \%$ POSSIBLE

Show all work, simplify as appropriate, and use "good form and procedure" (as in class).
Box in your final answers!
No notes or books allowed. A scientific calculator is allowed.
USE THE BLANK SHEET AT THE END IF YOU NEED MORE SPACE!!

1) Let $f(r, t)=t^{2} \sin \left(\frac{r}{t}\right)$. Find $f_{r}(r, t) \cdot(5$ points $)$
2) Let $f(x, y, z)=e^{x y z}$. Find $f_{y}(x, y, z)$ and use that to find $f_{y z}(x, y, z)$. (8 points)
3) Assume that f is a function of s and t. Write the limit definition of $f_{s}(s, t)$ using the notation from class. (4 points)
4) Find $\frac{\partial z}{\partial y}$ if $z=f(x, y)$ is a differentiable function described implicitly by the equation $\tan \left(y^{3} z\right)=x^{2}-y z$. Use the Calculus III formula given in class. Simplify. (12 points)
5) Let f, g, and h be differentiable functions such that $z=f(u, v)$, $u=g(r, s, t)$, and $v=h(r, s, t)$. Use the Chain Rule to write an expression for $\frac{\partial z}{\partial t} .(5$ points $)$
6) The temperature at any point (x, y) in the $x y$-plane is given by $f(x, y)=5 x^{2} y+y^{3}$ in degrees Fahrenheit. Assume x and y are measured in meters. Give appropriate units in your answers. (30 points total)
a) Find the maximum rate of change of temperature at the point $(2,-3)$. Approximate your final answer to four significant digits.

6 continued)
Reminder: The temperature at any point (x, y) in the $x y$-plane is given by $f(x, y)=5 x^{2} y+y^{3}$ in degrees Fahrenheit. Assume x and y are measured in meters. Give appropriate units in your answers.
b) Find the rate of change of temperature at $(2,-3)$ in the direction of $4 \mathbf{i}+\mathbf{j}$. Approximate your final answer to four significant digits.

Reminder: The temperature at any point (x, y) in the $x y$-plane is given by $f(x, y)=5 x^{2} y+y^{3}$ in degrees Fahrenheit. Assume x and y are measured in meters. Give appropriate units in your answers.
c) Use differentials to linearly approximate the change in temperature if (x, y) changes from $(2,-3)$ to $(2.03,-3.01)$.
d) In what direction does the temperature decrease most rapidly at $(2,-3)$? Give an appropriate non- $\mathbf{0}$ direction vector.
7) Find an equation for the tangent plane to the graph of the equation $z^{3}=x-x y$ at the point $P(8,-26,6) \cdot(10$ points $)$
8) Find all critical points of $f(x, y)=2 x^{4}+y^{2}-12 x y$, and classify each one as a local maximum, a local minimum, or a saddle point. Show all work, as we have done in class. You do not have to find the corresponding function values. (26 points)
9) The function f, where $f(x, y, z)=(x-3)^{2}+(y-5)^{2}+(z-7)^{2}$, gives the squared distance of the point (x, y, z) from the point $(3,5,7)$ in $x y z$-space. Using the method of Lagrange multipliers, find the point on the unit sphere $x^{2}+y^{2}+z^{2}=1$ that is closest to the point $(3,5,7)$. The point will lie in Octant I; you may use this fact without proof. You do not have to prove that your candidate point corresponds to an absolute minimum of f under the constraint. Give an exact, simplified answer, and rationalize denominators. (25 points)

