\qquad

QUIZ 4 (CHAPTER 17)

MATH 252 - FALL 2008 - KUNIYUKI
SCORED OUT OF 125 POINTS \Rightarrow MULTIPLIED BY $0.84 \Rightarrow 105 \%$ POSSIBLE

Show all work, simplify as appropriate, and use "good form and procedure" (as in class).
Box in your final answers!
No notes or books allowed. A scientific calculator is allowed.

1) Reverse the order of integration, and evaluate the resulting double integral:
$\int_{0}^{16} \int_{\sqrt[4]{y}}^{2} \frac{y}{\sqrt{113+x^{9}}} d x d y$. Give a simplified exact answer; do not approximate.
Sketch the region of integration; you may use different scales for the x - and y axes. (20 points). YOU MAY CONTINUE ON THE BACK.
2) Evaluate $\int_{-2}^{2} \int_{0}^{\sqrt{4-x^{2}}} e^{3 x^{2}+3 y^{2}} d y d x$. Your answer must be exact and simplified.

You do not have to approximate it. (16 points).
YOU MAY CONTINUE ON THE BACK.
3) Find the surface area of the portion of the graph of $z=7 x+\frac{1}{2} y^{2}$ that lies over R, where R is the region in the $x y$-plane bounded by the rectangle with vertices $(0,0),(4,0),(0,2)$, and $(4,2)$. Give an exact answer; you do not have to approximate it. Distance is measured in meters.

Major Hint: Use the following Table of Integrals formula:

$$
\int \sqrt{a^{2}+u^{2}} d u=\frac{u}{2} \sqrt{a^{2}+u^{2}}+\frac{a^{2}}{2} \ln \left|u+\sqrt{a^{2}+u^{2}}\right|+C
$$

(20 points). YOU MAY CONTINUE ON THE BACK.
4) Set up a triple integral for the volume of the solid bounded by the graphs of $y=x^{2}-3 x, 2 x-y=0, z=5$, and $z-e^{x}-e^{y}=5$. Make sure your triple integral is as detailed as possible; do not leave in generic notation like R or f. Also, do not leave $d V$ in your final answer; break it down into $d($ variable $) d($ variable $) d$ (variable). Do not evaluate. (15 points)
YOU MAY CONTINUE ON THE BACK.
5) A solid is bounded by the graph of $z=x^{2}+y^{2}$, the graph of $x^{2}+y^{2}=16$, and the $x y$-plane. The density at any point in the solid is directly proportional to the square of the distance from the point to the $x y$-plane. Find the center of mass of the solid; it turns out to be a point outside of the actual solid. Use cylindrical coordinates to complete the problem. If you use any short cuts, explain them precisely! Warning: You may run into some very big numbers along the way! (29 points). YOU MAY CONTINUE ON THE BACK AND ON THE NEXT SHEET.
(blank page)
6) Consider the Cartesian (or rectangular) coordinates x, y, and z, and the spherical coordinates ρ, ϕ, and θ. Verify that, for the spherical coordinate transformation, the Jacobian $\frac{\partial(x, y, z)}{\partial(\rho, \phi, \theta)}=\rho^{2} \sin \phi$. Begin by expressing x, y, and z in terms of ρ, ϕ, and θ; you may do this from memory without showing work. Work out an appropriate determinant, and clearly show each step; do not simply use a geometric argument. (25 points). YOU MAY CONTINUE ON THE BACK.

