\qquad

QUIZ 5 (CHAPTER 18)

MATH 252 - FALL 2006 - KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100\%

Show all work, simplify as appropriate, and use "good form and procedure" (as in class).
Box in your final answers!
No notes or books allowed. A scientific calculator is allowed.

USE THE BACK OF THIS TEST IF YOU NEED MORE SPACE!!

1) C consists of the curves C_{1} and C_{2} in the $x y$-plane. That is, $C=C_{1} \cup C_{2}$. The curve C_{1} is the directed line segment from $(0,0)$ to $(4,2)$, and the curve C_{2} is the portion of the parabola $x=y^{2}$ directed from $(4,2)$ to $(9,3)$. If the force at (x, y) is $\mathbf{F}(x, y)=\left\langle 4 y^{3}, 3 x\right\rangle$, find the work done by \mathbf{F} along C.
It is recommended that you write your final answer as a decimal. (25 points)
2) Use the idea of potential functions and the Fundamental Theorem for Line Integrals to show that the following line integral is independent of path in Octant I of $x y z$-space and to evaluate the integral. Show all work, as we have done in class. Use good form. In particular, indicate independent variables for functions; for example, write $f(x, y, z)$ instead of simply f. Give an exact, simplified answer; do not approximate.

$$
\int_{(2,1,1)}^{(1,2,3)}(6 x-1) d x+\left(4 e^{2 z}\right) d y+\left(8 y e^{2 z}+\frac{1}{z}\right) d z
$$

(27 points)
3) Let $\mathbf{F}(x, y, z)=3 \mathbf{i}+5 \mathbf{j}-7 \mathbf{k}$. Let S be the portion of the "half" cone $z=\sqrt{x^{2}+y^{2}}$ that is inside the cylinder $x^{2}+y^{2}=4$ but outside the cylinder $x^{2}+y^{2}=1$. Find the flux of \mathbf{F} across S, given by $\iint_{S} \mathbf{F} \bullet \mathbf{n} d S$, where \mathbf{n} is always taken to be the unit upper normal to S. (25 points)
4) Use the Divergence Theorem to find the flux of $\mathbf{F}(x, y, z)=\langle\ln (y z), 7 y, z\rangle$ through any sphere S of radius 3. (10 points)
5) Assume that the hypotheses of Stokes's Theorem (as stated in my 18.7 Notes) are satisfied. In particular, S has equation $z=f(x, y)$ and is a "capping surface" for a piecewise smooth simple closed curve C. Fill in the blank: (3 points)

According to Stokes's Theorem, $\oint_{C} \mathbf{F} \bullet \mathbf{T} d s=$ \qquad
6) Let $\mathbf{F}(x, y, z)=\left\langle y^{2} \sin x, 4 e^{y}+y, x^{3} y z^{3}\right\rangle \cdot(15$ points total $)$
a) Find $\operatorname{div} \mathbf{F}$.
b) Find curl \mathbf{F}.

