\qquad

QUIZ 5 (CHAPTER 18)

MATH 252 - FALL 2008 - KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS $=\mathbf{1 0 0 \%}$

Show all work, simplify as appropriate, and use "good form and procedure" (as in class).
Box in your final answers!
No notes or books allowed. A scientific calculator is allowed.

USE THE BACK OF THIS TEST IF YOU NEED MORE SPACE!!

1) Matching. (9 points total)

Fill in each blank below with a true property describing the vector field \mathbf{F}. (Assume that we are only evaluating \mathbf{F} on its domain.)
A. The vectors in the field all have the same direction.
B. The non- $\mathbf{0}$ vectors in the field all point away from the origin.
C. The vectors in the field are all unit vectors.
I. $\mathbf{F}(x, y)=x \mathbf{i}+y \mathbf{j}$. It is true that \qquad .
II. $\mathbf{F}(x, y)=2 \mathbf{i}+3 \mathbf{j}$. It is true that \qquad .
III. $\mathbf{F}(x, y)=\frac{1}{\sqrt{x^{2}+y^{2}}}(-x \mathbf{i}-y \mathbf{j})$. It is true that \qquad -.
2) Let $\mathbf{F}(x, y, z)=\left\langle x^{2} e^{2 z}, \cos (3 y), x y^{2} z^{3}-x\right\rangle$. (20 points total)
a) Find $\operatorname{div} \mathbf{F}$.
b) Find curl \mathbf{F}.
3) C consists of the curves C_{1} and C_{2} in $x y z$-space. That is, $C=C_{1} \cup C_{2}$. The curve C_{1} is the directed line segment from $(0,2,3)$ to $(2,8,4)$, and the curve C_{2} is the portion of the graph of $y=x^{3}$ in the plane $z=4$ directed from $(2,8,4)$ to $(3,27,4)$. If the force at (x, y, z) is $\mathbf{F}(x, y, z)=\langle x y, z+4,3\rangle$, find the work done by \mathbf{F} along C. It is recommended that you write your final answer as a decimal. Hint: If you want, you can analyze C_{2} first. (32 points)
(blank page)
4) Find the exact mass of a thin wire C in $x y z$-space if the linear mass density at any point (x, y, z) where $x \geq 0$ is given by $\delta(x, y, z)=5 x$ (i.e., five times the point's distance from the $y z$-plane), and if C is parameterized by $x=3 \cos t$, $y=3 \sin t$, and $z=7 t$, where $0 \leq t \leq \frac{\pi}{4}$. (17 points)
5) Use the idea of potential functions and the Fundamental Theorem for Line Integrals to show that the following line integral is independent of path in $x y z$-space and to evaluate the integral. Show all work, as we have done in class. Use good form. In particular, indicate independent variables for functions; for example, write $f(x, y, z)$ instead of simply f. Give an exact, simplified answer; do not approximate.

$$
\int_{(-1,0,2)}^{(3,4,1)}\left(4 y^{2}+z\right) d x+\left(8 x y-3 z e^{3 y}\right) d y+\left(x-e^{3 y}+3 z^{2}\right) d z
$$

(27 points)

