
QUIZ 2 (CHAPTER 15, 16.1, 16.2)
SOLUTIONS

MATH 252 – FALL 2007 – KUNIYUKI
SCORED OUT OF 125 POINTS 

� 

⇒ MULTIPLIED BY 0.84 

� 

⇒ 105% POSSIBLE

1) Find the length of the curve parameterized by:

  
x = t2 , y =

5

2
t2 , z = 2t, 0 ≤ t ≤ 2 .

Major Hint (which you may use without proof):
According to the Table of Integrals, if a is a positive real constant,

  
a2 + u2 du∫ =

u

2
a2 + u2 +

a2

2
ln u + a2 + u2 + C

Leave your answer as a simplified exact answer; do not approximate it using a
calculator. You do not have to apply log properties at the end. Distance is
measured in meters. Show all work! (20 points)
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Let   a = 2 , so that   a
2 = 4 .

Perform a classic u-substitution:

Let   u = 3t . Then,

  

du = 3 dt ⇒

dt =
1

3
du



Change the limits of integration:

  

t = 0 ⇒ u = 3 0( ) = 0

t = 2 ⇒ u = 3 2( ) = 6
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 meters See Note below.( )
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2) A curve C is parameterized by the vector-valued function (VVF) given by

   
r t( ) = e2t , 3t +1, t2 . Find a tangent vector to C at the point 

  
e10 , 16, 25( ) .

(10 points)

Find the t-value corresponding to the given point.

Let’s equate the y-components and solve:

  

3t +1= 16

t = 5

Check:

   

r 5( ) = e2 5( ) , 3 5( ) +1, 5( )2

= e10 , 16, 25

  
Find ′r 5( ).

   

r t( ) = e2t , 3t +1, t2 ⇒

′r t( ) = 2e2t , 3, 2t ⇒

′r 5( ) = 2e2 5( ) , 3, 2 5( )

= 2e10 , 3, 10 or any non-0 scalar multiple of this( )

3) Complete the Product Rule for differentiating the dot product of two
differentiable vector-valued functions (VVFs) u and v:

  
D

t
u t( ) • v t( )⎡⎣ ⎤⎦ = u t( ) • ′v t( ) + ′u t( ) • v t( )

(3 points)



4) The velocity of a moving particle is given by 
   
v t( ) = 7et , 4cos t, 3t2 − 2 .

Find the position vector-valued function (VVF rule) 
    

� 

r t( ) if 
  
r 0( ) = 1, 4, −3 .

(10 points)

   

   

r t( ) = v t( )dt∫ one member( )
= 7et , 4cos t, 3t2 − 2 dt∫
= 7et , 4sin t, t3 − 2t + C

Solve for C by plugging in t = 0 and using the initial condition.

   

r 0( ) = 7e 0( ) , 4sin 0( ), 0( )3
− 2 0( ) + C

1, 4, −3 = 7, 0, 0 + C

C = −6, 4, −3

Therefore,

   

r t( ) = 7et , 4sin t, t3 + −6, 4, −3

r t( ) = 7et − 6, 4sin t + 4, t3 − 2t − 3

5) Find the unit tangent VVF (rule) 
    

� 

T t( )  and the principal unit normal VVF (rule)

    

� 

N t( )  for the curve C determined by 
   
r t( ) = −6t, 2t3 , where   t > 0 . Show all

work and simplify completely, as we have done in class. Do not use the fact
that 

  
T t( ) ⊥ N t( ) , and do not eliminate the parameter. Messy and/or

undisciplined work may not be graded! (27 points)

   
r t( ) = −6t, 2t3

   
′r t( ) = −6, 6t2 ,  or  6 −1, t2

   

′r t( ) = −6, 6t2

= 6 −1, t2

= 6 −1( )2
+ t2( )2

= 6 1+ t4
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Observe: For   t > 0 , 
   
T t( ) • N t( ) = 0 , which reflects the fact that 

  
T t( ) ⊥ N t( ) .

Note: If we had eliminated the parameter, we would have obtained 
  
y = −

x3

108
, which can

be analyzed directly.



6) Assume that r is a position VVF of t in 3-space that is twice differentiable
everywhere (i.e., second derivatives exist for all real t). Write a curvature
formula we discussed for 

  

� 

κ t( )  that involves a cross product. (4 points)

   

κ t( ) = v t( ) × a t( )
v t( ) 3

or
′r t( ) × ′′r t( )

′r t( ) 3

7) A helical curve C is determined by 
   
r t( ) = 2cos t, 2sin t, 3t . The curvature at

every point on the curve is given by a constant, 

� 

κ . Find 

� 

κ . Use your formula
from Problem 6), and simplify your answer completely. Show all work!
(16 points)

   

Let r t( ) = 2cos t, 2sin t, 3t .

Then, ′r t( )  or v t( ) = −2sin t, 2cos t, 3 , and

′′r t( )  or a t( ) = −2cos t, −2sin t, 0 .

    

v t( ) × a t( ) = −2sin t, 2cos t, 3 × −2cos t, −2sin t, 0

=
i j k

−2sin t 2cos t 3

−2cos t −2sin t 0

=
2cos t 3

−2sin t 0
i −

−2sin t 3

−2cos t 0
j +

−2sin t 2cos t

−2cos t −2sin t
k

= 6sin t( ) i − 6cos t( ) j+ 4sin2 t + 4cos2 t( )
=4 sin2 t+cos2 t( )
=4 1( )
=4

  
k

= 6sin t( ) i − 6cos t( ) j+ 4k

= 6sin t, − 6cos t, 4   or  2 3sin t, − 3cos t, 2



    

v t( ) × a t( ) = 6sin t, −6cos t, 4

= 6sin t( )2
+ −6cos t( )2

+ 4( )2

= 36sin2 t + 36cos2 t +16

= 36 sin2 t + cos2 t
=1
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   or   
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+ 2( )2
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= 2 9 sin2 t + cos2 t
=1
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κ t( ) = v t( ) × a t( )
v t( ) 3

=
2 13

13 13
=

2

13



8) Sketch the level curves of 
  
f x, y( ) = x −1( )2

+ y2  for k = 1, 4, 9 on the grid

below. Label the curves with their corresponding k-values. Be reasonably
accurate. (8 points)

Let 
    

� 

f x, y( ) = k .

For any real k:

  
k = x −1( )2

+ y2

The graph of this is a circle of radius  k  centered at the point 
 
1,0( )  in the

xy-plane.

  k = 1 : The circle has radius 1.
  k = 4 : The circle has radius 2.
  k = 9 : The circle has radius 3.



9) What is the graph of 
  
z = x −1( )2

+ y2  in xyz-space? Problem 8) may help.

Box in one: (3 points)

A Cone                    A Paraboloid                    A Sphere

The original graph of  f  is a paraboloid with equation 
  
z = x −1( )2

+ y , so it makes sense

that the level curves are circles. The paraboloid opens upward, and its vertex is at 
 
1,0,0( ) .

10) Matching. (9 points total)

Fill in each blank with the best choice in the list below to indicate the level
surface of   

� 

f  for the given value of k.

A. A Sphere or Ellipsoid
B. A Hyperboloid of One Sheet
C. A Hyperboloid of Two Sheets
D. A Cone
E. A Circular or Elliptic Paraboloid
F. A Hyperbolic Paraboloid
G. A Right Circular or Elliptic Cylinder
H. A Plane
I. A Line (a “degenerate” surface)
J. A Point (a “degenerate” surface)
K. NONE (no surface)

a) The level surface of 
  
f x, y, z( ) = 2x − 4y + 5z, k = 10  is __H__.

Analyze:   10 = 2x − 4y + 5z . This is a nondegenerate linear equation in x, y, and z,
so its graph is a plane in xyz-space.

b) The level surface of 
  
f x, y, z( ) = x2 + y2 − z2 , k = 4  is __B__.

Analyze:   4 = x2 + y2 − z2 . Its graph is a hyperboloid of one sheet in xyz-space.
Its axis is the z-axis.

c) The level surface of 
  
f x, y, z( ) = x2 + y2 − z2 , k = −4  is __C__.

Analyze:   −4 = x2 + y2 − z2 , which is equivalent to:   − x2 − y2 + z2 = 4 .
The graph is a hyperboloid of two sheets in xyz-space. Its axis is the z-axis.



11) Show that 
  

lim
x , y( )→ 0,0( )

2x3 + y3

5x3 − 2y3
 does not exist. (10 points)

Let 
    

� 

x, y( ) → 0,0( ) along the y-axis (x = 0):

  

lim
x , y( )→ 0,0( )

2x3 + y3

5x3 − 2y3
= lim

x , y( )→ 0,0( )
2 0( )3

+ y3

5 0( )3
− 2y3

= lim
y→0

y3

−2y3

= −
1

2

Let 
    

� 

x, y( ) → 0,0( ) along the x-axis (y = 0):

  

lim
x , y( )→ 0,0( )

2x3 + y3

5x3 − 2y3
= lim

x , y( )→ 0,0( )
2x3 + 0( )3

5x3 − 2 0( )3

= lim
x→0

2x3

5x3

=
2

5

We have found two paths approaching 
 
0, 0( )  that yield different limit values for

  

2x3 + y3

5x3 − 2y3
, so the indicated limit does not exist by the Two-Path Rule.

12) Use polar coordinates to find 
  

lim
x , y( )→ 0,0( )

sin x2 + y2( )
x2 + y2

. (5 points)

  

lim
x , y( )→ 0,0( )

sin x2 + y2( )
x2 + y2

= lim
r→0

sin r 2( )
r 2

0

0
 limit form
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D
r
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by L'Hôpital's Rule( )

= lim
r→0

1
2r cos r 2( )

1 2r

= cos 0( )
= 1


