QUIZ 3 (SECTIONS 16.3-16.9) SOLUTIONS

MATH 252 – FALL 2007 – KUNIYUKI SCORED OUT OF 125 POINTS \Rightarrow MULTIPLIED BY 0.84 \Rightarrow 105% POSSIBLE

1) Let
$$f(x,y,z) = \sqrt{3x^2y + z^3}$$
. Find $f_x(x,y,z)$. (4 points)

$$\begin{split} f_x \Big(x, y, z \Big) &= D_x \Big(\sqrt{3x^2 y + z^3} \Big) \\ &= D_x \bigg[\Big(3x^2 y + z^3 \Big)^{1/2} \bigg] \\ &= \frac{1}{2} \Big(3x^2 y + z^3 \Big)^{-1/2} \cdot D_x \Bigg(3x^2 \underbrace{y}_{\frac{y}{y + y}} + \underbrace{z^3}_{\frac{y}{y + y}} \Big) \\ &= \underbrace{\frac{1}{2} \Big(3x^2 y + z^3 \Big)^{-1/2}}_{2} \cdot \bigg[3y \Big(\cancel{Z} x \Big) \bigg] \\ &= \boxed{\frac{3xy}{\sqrt{3x^2 y + z^3}}} \end{split}$$

2) Let $f(r,s) = \cos(rs)$. Find $f_r(r,s)$ and use that to find $f_{rs}(r,s)$. (6 points)

$$f_r(r,s) = D_r \Big[\cos(rs) \Big]$$

$$= \Big[-\sin(rs) \Big] \Big[D_r \Big(r \underbrace{s}_{\text{num}} \Big) \Big]$$

$$= \Big[-\sin(rs) \Big] \Big[s \Big]$$

$$= -s \sin(rs)$$

$$f_{rs}(r,s) = D_s \left[-s \sin(rs) \right]$$

We will use a Product Rule for Differentiation.

$$= \left[D_s(-s)\right] \left[\sin(rs)\right] + \left[-s\right] \left(D_s \left[\sin(rs)\right]\right)$$

$$= \left[-1\right] \left[\sin(rs)\right] + \left[-s\right] \left[\cos(rs)\right] \left[D_s \left(\underset{n_{\#}^{n}}{r}\right)\right]$$

$$= \left[-1\right] \left[\sin(rs)\right] + \left[-s\right] \left[\cos(rs)\right] \left[r\right]$$

$$= \left[-\sin(rs) - rs\cos(rs)\right]$$

3) Assume that f is a function of x and y. Write the limit definition of $f_y(x,y)$ using the notation from class. (4 points)

$$f_{y}(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$

4) Let $f(x,y) = 3xy^2 - 4y^3 + 5$. Use differentials to linearly approximate the change in f if (x,y) changes from (4,-2) to (3.98,-1.96). (12 points)

$$f_{x}(x,y) = D_{x} \left(3x \underbrace{y^{2}}_{n\#n} - 4 \underbrace{y^{3}}_{n\#n} + 5\right)$$

$$= 3y^{2}$$

$$f_{x}(4,-2) = 3(-2)^{2}$$

$$= 12$$

$$dx = \text{new } x - \text{old } x$$

$$= 3.98 - 4$$

$$= -0.02$$

$$f_{y}(x,y) = D_{y} \left(3 \underbrace{x}_{y} y^{2} - 4y^{3} + 5 \right)$$

$$= 3x(2y) - 12y^{2} \qquad dy = \text{new } y - \text{old } y$$

$$= 6xy - 12y^{2} \qquad = -1.96 - (-2)$$

$$f_{y}(4,-2) = 6(4)(-2) - 12(-2)^{2} \qquad = 0.04$$

$$= -96$$

The approximate change in f is given by:

$$df = \left[f_x(4, -2) \right] dx + \left[f_y(4, -2) \right] dy$$
$$= \left[12 \right] \left(-0.02 \right) + \left[-96 \right] \left(0.04 \right)$$
$$= \left[-4.08 \right]$$

Note: Actual change ≈ -4.01315

5) Let f, f_1 , f_2 and f_3 be differentiable functions such that w = f(x, y, z), $x = f_1(u, v)$, $y = f_2(u, v)$, and $z = f_3(u, v)$. Use the Chain Rule to write an expression for $\frac{\partial w}{\partial v}$. (5 points)

$$\frac{\partial w}{\partial v} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial v} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial v}$$

6) Find $\frac{\partial z}{\partial x}$ if z = f(x, y) is a differentiable function described implicitly by the equation $e^{xyz} = xz^4$. Use the Calculus III formula given in class. Simplify. (9 points)

First, isolate 0 on one side:
$$e^{xyz} - xz^4 = 0$$

Let this be $F(x, y, z)$

Find $\frac{\partial z}{\partial x}$. When using the formula, treat x, y, and z as independent variables.

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$$

$$= -\frac{D_x \left[e^{xyz} - x z^4 \right]}{D_z \left[e^{xyz} - x z^4 \right]}$$

$$= -\frac{e^{xyz} \cdot D_x \left(x yz \right) - z^4}{e^{xyz} \cdot D_z \left(xyz \right) - x \left(4z^3 \right)}$$

$$= -\frac{e^{xyz} \cdot (yz) - z^4}{e^{xyz} \cdot (xy) - 4xz^3}$$

$$= \left[-\frac{yze^{xyz} - z^4}{xye^{xyz} - 4xz^3} \text{ or } \frac{z^4 - yze^{xyz}}{xye^{xyz} - 4xz^3} \text{ or } \frac{yze^{xyz} - z^4}{4xz^3 - xye^{xyz}} \right]$$

- 7) The temperature at any point (x, y) in the *xy*-plane is given by $f(x, y) = 2xy + x^2$ in degrees Fahrenheit. Assume *x* and *y* are measured in meters. Give units in your answers. (23 points total)
 - a) Find the **maximum** rate of change of temperature at the point (3, 4). Approximate your final answer to three significant digits.

$$\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle$$

$$= \langle D_x \left(2x \underbrace{y}_{\text{"#"}} + x^2 \right), D_y \left(2 \underbrace{x}_{\text{"#"}} y + \underbrace{x^2}_{\text{"#"}} \right) \rangle$$

$$= \langle 2y + 2x, 2x \rangle$$

$$\nabla f(3,4) = \langle 2(4) + 2(3), 2(3) \rangle$$
$$= \langle 14, 6 \rangle$$

The length of the gradient of f at (3,4) gives the **maximum** rate of change of temperature at that point.

$$\|\nabla f(3,4)\| = \|\langle 14,6\rangle\|$$

$$= 2\|\langle 7,3\rangle\|$$

$$= 2\sqrt{(7)^2 + (3)^2}$$

$$= 2\sqrt{58}$$

$$\approx 15.2$$

Answer: About $15.2 \frac{^{\circ} F}{m}$

b) Find the rate of change of temperature at (3, 4) in the direction of $\mathbf{i} - 3\mathbf{j}$. Approximate your final answer to three significant digits.

Let **a** be the given direction vector $\mathbf{i} - 3\mathbf{j}$, or $\langle 1, -3 \rangle$.

Find the unit vector **u** in the direction of **a**.

$$\mathbf{u} = \frac{\mathbf{a}}{\|\mathbf{a}\|}$$

$$= \frac{\langle 1, -3 \rangle}{\|\langle 1, -3 \rangle\|}$$

$$= \frac{\langle 1, -3 \rangle}{\sqrt{(1)^2 + (-3)^2}}$$

$$= \frac{\langle 1, -3 \rangle}{\sqrt{10}} \text{ or } \frac{1}{\sqrt{10}} \langle 1, -3 \rangle$$

The directional derivative at (3, 4) in the direction of **u** is:

$$D_{\mathbf{u}} f(3,4) = \nabla f(3,4) \bullet \mathbf{u}$$

$$= \langle 14,6 \rangle \bullet \left(\frac{1}{\sqrt{10}} \langle 1,-3 \rangle \right)$$

$$= \frac{1}{\sqrt{10}} (\langle 14,6 \rangle \bullet \langle 1,-3 \rangle)$$

$$= \frac{1}{\sqrt{10}} (-4)$$

$$= \frac{-4}{\sqrt{10}} \text{ or } -\frac{4\sqrt{10}}{10}$$

$$= -\frac{2\sqrt{10}}{5}$$

$$\approx -1.26$$

Answer: About
$$-1.26 \frac{^{\circ} F}{m}$$

c) Find a non- $\mathbf{0}$ direction vector \mathbf{v} such that the rate of change of temperature at (3, 4) in the direction of \mathbf{v} is 0 [units].

We want a tangent vector to the level curve of f through the point (3, 4).

Any non-0 vector orthogonal to $\nabla f(3,4)$, which is $\langle 14,6 \rangle$, will do.

Observe that
$$\langle 6, -14 \rangle \perp \langle 14, 6 \rangle$$
, since $\langle 6, -14 \rangle \bullet \langle 14, 6 \rangle = 0$.

Therefore, $\langle 6 \lceil m \rceil, -14 \lceil m \rceil \rangle$ or any non-**0** scalar multiple will do.

In particular, the simpler vector $\langle 3 [m], -7 [m] \rangle$ will do.

8) Find an equation for the tangent plane to the graph of the equation $5x^2 - 4y^2 + z^2 = 45$ at the point P(-3, 2, 4). (10 points)

Observe that the given graph is a hyperboloid of one sheet.

(You may check that the coordinates of P satisfy the given equation, meaning that P lies on the graph of the equation.)

Isolate 0 on one side of the given equation.

$$\underbrace{5x^2 - 4y^2 + z^2 - 45}_{=F(x,y,z)} = 0$$

A normal vector for the desired tangent plane is given by $\nabla F(-3, 2, 4)$.

$$\nabla F \Big|_{P} = \left\langle F_{x} \Big|_{P}, F_{y} \Big|_{P}, F_{z} \Big|_{P} \right\rangle$$
$$= \left\langle 10x, -8y, 2z \right\rangle$$

$$\nabla F(-3, 2, 4) = \langle 10(-3), -8(2), 2(4) \rangle$$
$$= \langle -30, -16, 8 \rangle$$

An equation for the tangent plane is given by:

$$(F_x|_P)(x-x_0) + (F_y|_P)(y-y_0) + (F_z|_P)(z-z_0) = 0$$

$$(-30)(x-(-3)) + (-16)(y-2) + (8)(z-4) = 0$$

$$-30(x+3)-16(y-2)+8(z-4)=0$$
or
$$15(x+3)+8(y-2)-4(z-4)=0$$
or
$$-30x-16y+8z-90=0$$
or
$$15x+8y-4z+45=0$$