## QUIZ 3 (SECTIONS 16.3-16.9) SOLUTIONS

MATH 252 - FALL 2008 - KUNIYUKI
SCORED OUT OF 125 POINTS $\Rightarrow$ MULTIPLIED BY $0.84 \Rightarrow 105 \%$ POSSIBLE

1) Let $f(r, t)=t^{2} \sin \left(\frac{r}{t}\right)$. Find $f_{r}(r, t)$. (5 points)

$$
\begin{aligned}
f_{r}(r, t) & =D_{r}[\underbrace{t^{2}}_{\text {"\#" }} \sin \left(\frac{r}{t}\right)] \\
& =t^{2} \cdot D_{r}\left[\sin \left(\frac{r}{t}\right)\right] \\
& =t^{2} \cdot\left[\cos \left(\frac{r}{t}\right)\right] \cdot D_{r}\left(\frac{r}{t}\right) \\
& =t^{2} \cdot\left[\cos \left(\frac{r}{t}\right)\right] \cdot D_{r}(\underbrace{\frac{1}{t}}_{\text {"\#" }} \cdot r) \\
& =t^{2} \cdot\left[\cos \left(\frac{r}{t}\right)\right] \cdot \frac{1}{t} \\
& =t \cos \left(\frac{r}{t}\right)
\end{aligned}
$$

2) Let $f(x, y, z)=e^{x y z}$. Find $f_{y}(x, y, z)$ and use that to find $f_{y z}(x, y, z)$. (8 points)

$$
\begin{aligned}
f_{y}(x, y, z) & =D_{y}\left[e^{x y z}\right] \\
& =\left[e^{x y z}\right] \cdot\left[D_{y}(x y z)\right] \\
& =\left[e^{x y z}\right] \cdot[D_{y}(\underbrace{x z}_{\text {\#\#n }^{x}} \cdot y)] \\
& =e^{x y z} \cdot x z \\
& =x z e^{x y z} \\
f_{y z}(x, y, z) & =D_{z}\left[f_{y}(x, y, z)\right] \\
& =D_{z}[\underbrace{\left.x z e^{x y z}\right]}_{\#^{\prime \prime}} \\
& =x \cdot D_{z}\left[z e^{x y z}\right]
\end{aligned}
$$

We will use a Product Rule for Differentiation.

$$
\begin{aligned}
& =x(\underbrace{\left[D_{z}(z)\right]}_{=(1)} \cdot\left[e^{x y z}\right]+[z] \cdot\left[D_{z}\left(e^{x y z}\right)\right]) \\
& =x\left[e^{x y z}+z \cdot D_{z}\left(e^{x y z}\right)\right] \\
& =x[e^{x y z}+z \cdot e^{x y z} \cdot D_{z}(\underbrace{x y}_{" \# \prime} z)] \\
& =x\left[e^{x y z}+z \cdot e^{x y z} \cdot x y\right] \\
& =x\left(e^{x y z}+x y z e^{x y z}\right) \\
& =x e^{x y z}(1+x y z), \text { or } x e^{x y z}+x^{2} y z e^{x y z}
\end{aligned}
$$

3) Assume that $f$ is a function of $s$ and $t$. Write the limit definition of $f_{s}(s, t)$ using the notation from class. (4 points)

$$
f_{s}(s, t)=\lim _{h \rightarrow 0} \frac{f(s+h, t)-f(s, t)}{h}
$$

4) Find $\frac{\partial z}{\partial y}$ if $z=f(x, y)$ is a differentiable function described implicitly by the equation $\tan \left(y^{3} z\right)=x^{2}-y z$. Use the Calculus III formula given in class. Simplify. (12 points)

First, isolate 0 on one side: $\underbrace{\tan \left(y^{3} z\right)-x^{2}+y z}=0$

$$
\text { Let this be } F(x, y, z)
$$

Find $\frac{\partial z}{\partial y}$. When using the formula, treat $x, y$, and $z$ as independent variables.

$$
\begin{aligned}
& \frac{\partial z}{\partial y}=-\frac{F_{y}(x, y, z)}{F_{z}(x, y, z)} \\
& =-\frac{D_{y}[\tan \left(y^{3} z\right)-\overbrace{x^{2}}^{\text {"\#" }}+y z \overbrace{\text { "\#\# }}^{\text {"\# }}}{D_{z}[\tan \left(y^{3} z\right)-\underbrace{x^{2}}_{\text {"\#" }}+\underbrace{y}_{\text {"\#" }} z]} \\
& =-\frac{\left[\sec ^{2}\left(y^{3} z\right)\right] \cdot\left[D_{y}\left(y^{3} \frac{\text { "\#n }}{z}\right)\right]+z}{\left[\sec ^{2}\left(y^{3} z\right)\right] \cdot[D_{z}(\underbrace{y^{3}}_{\text {\#\#" }} z)]+y} \\
& =-\frac{\left[\sec ^{2}\left(y^{3} z\right)\right] \cdot\left[z \cdot D_{y}\left(y^{3}\right)\right]+z}{\left[\sec ^{2}\left(y^{3} z\right)\right] \cdot\left[y^{3}\right]+y} \\
& =-\frac{\left[\sec ^{2}\left(y^{3} z\right)\right] \cdot\left[z \cdot 3 y^{2}\right]+z}{\left[\sec ^{2}\left(y^{3} z\right)\right] \cdot\left[y^{3}\right]+y} \\
& =-\frac{3 y^{2} z \sec ^{2}\left(y^{3} z\right)+z}{y^{3} \sec ^{2}\left(y^{3} z\right)+y} \text { or }-\frac{z\left[3 y^{2} \sec ^{2}\left(y^{3} z\right)+1\right]}{y\left[y^{2} \sec ^{2}\left(y^{3} z\right)+1\right]}
\end{aligned}
$$

5) Let $f, g$, and $h$ be differentiable functions such that $z=f(u, v)$, $u=g(r, s, t)$, and $v=h(r, s, t)$. Use the Chain Rule to write an expression for $\frac{\partial z}{\partial t} \cdot(5$ points $)$


$$
\frac{\partial z}{\partial t}=\frac{\partial z}{\partial u} \frac{\partial u}{\partial t}+\frac{\partial z}{\partial v} \frac{\partial v}{\partial t}
$$

6) The temperature at any point $(x, y)$ in the $x y$-plane is given by $f(x, y)=5 x^{2} y+y^{3}$ in degrees Fahrenheit. Assume $x$ and $y$ are measured in meters. Give appropriate units in your answers. (30 points total)
a) Find the maximum rate of change of temperature at the point $(2,-3)$. Approximate your final answer to four significant digits. (10 points)

$$
\begin{aligned}
\nabla f(x, y) & =\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle \\
& =\left\langle D_{x}\left(5 x^{2} y+y^{3}\right), \quad D_{y}\left(5 x^{2} y+y^{3}\right)\right\rangle \\
& =\left\langle 10 x y, 5 x^{2}+3 y^{2}\right\rangle \\
\nabla f(2,-3) & =\left\langle 10(2)(-3), 5(2)^{2}+3(-3)^{2}\right\rangle \\
& =\langle-60,47\rangle
\end{aligned}
$$

The length of the gradient of $f$ at $(2,-3)$ gives the maximum rate of change of temperature at that point.

$$
\begin{aligned}
\|\nabla f(2,-3)\| & =\|\langle-60,47\rangle\| \\
& =\sqrt{(-60)^{2}+(47)^{2}} \\
& =\sqrt{5809} \\
& \approx 76.22
\end{aligned}
$$

Answer: $\square$
b) Find the rate of change of temperature at $(2,-3)$ in the direction of $4 \mathbf{i}+\mathbf{j}$. Approximate your final answer to four significant digits. (10 points)

Let $\mathbf{a}$ be the given direction vector $4 \mathbf{i}+\mathbf{j}$, or $\langle 4,1\rangle$.
Find the unit vector $\mathbf{u}$ in the direction of $\mathbf{a}$.

$$
\begin{aligned}
\mathbf{u} & =\frac{\mathbf{a}}{\|\mathbf{a}\|} \\
& =\frac{\langle 4,1\rangle}{\|\langle 4,1\rangle\|} \\
& =\frac{\langle 4,1\rangle}{\sqrt{(4)^{2}+(1)^{2}}} \\
& =\frac{\langle 4,1\rangle}{\sqrt{17}} \text { or } \frac{1}{\sqrt{17}}\langle 4,1\rangle \text { or } \frac{\sqrt{17}}{17}\langle 4,1\rangle
\end{aligned}
$$

The directional derivative at $(2,-3)$ in the direction of $\mathbf{u}$ is:

$$
\begin{aligned}
D_{\mathbf{u}} f(2,-3) & =\nabla f(2,-3) \cdot \mathbf{u} \\
& =\langle-60,47\rangle \cdot\left(\frac{1}{\sqrt{17}}\langle 4,1\rangle\right) \\
& =\frac{1}{\sqrt{17}}(\langle-60,47\rangle \bullet\langle 4,1\rangle) \\
& =\frac{1}{\sqrt{17}}[(-60)(4)+(47)(1)] \\
& =\frac{1}{\sqrt{17}}[-193] \\
& =-\frac{193}{\sqrt{17}} \text { or }-\frac{193 \sqrt{17}}{17} \\
& \approx-46.81
\end{aligned}
$$

Answer:

$$
\text { About }-46.81 \frac{{ }^{\circ} \mathrm{F}}{\mathrm{~m}}
$$

c) Use differentials to linearly approximate the change in temperature if $(x, y)$ changes from $(2,-3)$ to $(2.03,-3.01)$. (7 points)

From part a), we know that $\nabla f(2,-3)=\langle-60,47\rangle$. In particular,

$$
\begin{aligned}
& f_{x}(2,-3)=-60, \text { and } \\
& f_{y}(2,-3)=47 .
\end{aligned}
$$

Find the changes in $x$ and $y$ :

$$
\begin{array}{rlrl}
d x & =\text { new } x-\text { old } x & d y & =\text { new } y-\text { old } y \\
& =2.03-2 & & =-3.01-(-3) \\
& =0.03 & & =-0.01
\end{array}
$$

The approximate change in $f$ is given by:

$$
\begin{aligned}
d f & =\left[f_{x}(2,-3)\right] d x+\left[f_{y}(2,-3)\right] d y \\
& =[-60][0.03]+[47][-0.01] \\
& =-2.27
\end{aligned}
$$

Note: Actual change $=f(2.03,-3.01)-f(2,-3) \approx-2.29045$.
Answer: $-2.27^{\circ} \mathrm{F}$
d) In what direction does the temperature decrease most rapidly at $(2,-3)$ ? Give an appropriate non- $\mathbf{0}$ direction vector. (3 points)

We want a vector that points in the direction opposite from the gradient vector, $\nabla f(2,-3)=\langle-60,47\rangle$.

Answer: $\langle 60[\mathrm{~m}],-47[\mathrm{~m}]\rangle$, or any positive scalar multiple of this.
7) Find an equation for the tangent plane to the graph of the equation $z^{3}=x-x y$ at the point $P(8,-26,6) \cdot(10$ points $)$
(You may check that the coordinates of $P$ satisfy the given equation, meaning that $P$ lies on the graph of the equation.)

Isolate 0 on one side of the given equation.

$$
\underbrace{z^{3}-x+x y}_{=F(x, y, z)}=0
$$

A normal vector for the desired tangent plane is given by $\nabla F(8,-26,6)$.

$$
\begin{aligned}
& \left.\nabla F\right|_{P}=\left\langle\left. F_{x}\right|_{P},\left.F_{y}\right|_{P},\left.F_{z}\right|_{P}\right\rangle \\
& \\
& =\left\langle-1+y, x, 3 z^{2}\right\rangle \text { or }\left\langle y-1, x, 3 z^{2}\right\rangle \\
& \nabla F(8,-26,6)=\left\langle-1+(-26), 8,3(6)^{2}\right\rangle \\
& \\
& =\langle-27,8,108\rangle
\end{aligned}
$$

An equation for the tangent plane is given by:

$$
\begin{aligned}
\left(\left.F_{x}\right|_{P}\right)\left(x-x_{0}\right)+\left(\left.F_{y}\right|_{P}\right)\left(y-y_{0}\right)+\left(\left.F_{z}\right|_{P}\right)\left(z-z_{0}\right) & =0 \\
(-27)(x-8)+(8)(y-(-26))+(108)(z-6) & =0 \\
-27(x-8)+8(y+26)+108(z-6) & =0 \\
\text { or } 27(x-8)-8(y+26)-108(z-6) & =0 \\
\text { or }-27 x+8 y+108 z-224 & =0 \\
\text { or } 27 x-8 y-108 z+224 & =0
\end{aligned}
$$

Here's a graph:

8) Find all critical points of $f(x, y)=2 x^{4}+y^{2}-12 x y$, and classify each one as a local maximum, a local minimum, or a saddle point. Show all work, as we have done in class. You do not have to find the corresponding function values. (26 points)

Step 1: Find any critical points (CPs).

$$
\begin{aligned}
& f_{x}(x, y)=8 x^{3}-12 y \quad\left(\text { never DNE; is continuous on } \mathbf{R}^{2}\right) \\
& f_{y}(x, y)=2 y-12 x \quad\left(\text { never DNE; is continuous on } \mathbf{R}^{2}\right)
\end{aligned}
$$

Solve the system: $\left\{\begin{array}{r}8 x^{3}-12 y=0 \\ 2 y-12 x=0\end{array}\right.$
(Optional.) If we divide both sides of the first equation by 4 and divide both sides of the second equation by 2 , we obtain the simpler system:

$$
\left\{\begin{array}{r}
2 x^{3}-3 y=0 \\
y-6 x=0
\end{array}\right.
$$

We can solve this using the Substitution Method.
If we solve the second equation for $y$, we get:

$$
y=6 x
$$

Incorporate this into the first equation.

$$
\begin{aligned}
2 x^{3}-3 y & =0, y=6 x \Rightarrow \\
2 x^{3}-3(6 x) & =0 \\
2 x^{3}-18 x & =0 \\
2 x\left(x^{2}-9\right) & =0 \\
2 x(x+3)(x-3) & =0 \\
x=0 \quad \text { or } \quad x+3 & =0 \\
x & =-3
\end{aligned} \text { or } \begin{aligned}
x-3 & =0 \\
x & =3
\end{aligned}
$$

Find the corresponding $x$-values.

$$
\begin{aligned}
& \text { Using } y=6 x \text {, } \\
& x=0 \quad \Rightarrow \quad y=0 \quad \Rightarrow \quad(0,0) \\
& x=-3 \Rightarrow y=-18 \Rightarrow(-3,-18) \\
& x=3 \quad \Rightarrow \quad y=18 \quad \Rightarrow \quad(3,18)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Our critical points (CPs) are: } \\
& \qquad(0,0),(-3,-18) \text {, and }(3,18) .
\end{aligned}
$$

(Note that they are in the domain of $f$.)

Step 2: Find $f_{x x}$ and $D$.
Remember,

$$
\begin{aligned}
& f_{x}(x, y)=8 x^{3}-12 y \\
& f_{y}(x, y)=2 y-12 x \\
& f_{x x}(x, y)=24 x^{2} \\
& f_{x y}(x, y)=-12 \quad\left(=f_{y x}(x, y) ; \text { note that } "-122^{\prime} \text { is continuous. }\right) \\
& f_{y y}(x, y)=2 \\
& D=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right| \\
&=\left|\begin{array}{ll}
24 x^{2} & -12 \\
-12 & 2
\end{array}\right| \\
&=\left(24 x^{2}\right)(2)-(-12)(-12) \\
&= 48 x^{2}-144
\end{aligned}
$$

Step 3: Classify the critical points (CPs).

| Critical Point | $D=48 x^{2}-144$ | $f_{x x}=24 x^{2}$ | Classification |
| :---: | :---: | :---: | :---: |
| $(0,0)$ | $\begin{aligned} D & =48(0)^{2}-144 \\ & =-144 \\ & <0 \quad("-") \end{aligned}$ | irrelevant | Saddle Point |
| $(-3,-18)$ | $\begin{aligned} D & =48(-3)^{2}-144 \\ & =288 \\ & >0 \quad("+") \end{aligned}$ | $\begin{aligned} f_{x x} & =24(-3)^{2} \\ & =216 \\ & >0 \quad("+") \end{aligned}$ <br> Think: "Concave up" ( $\cup$ ) | Local Minimum |
| $(3,18)$ | $\begin{aligned} D & =48(3)^{2}-144 \\ & =288 \\ & >0 \quad("+") \end{aligned}$ | $\begin{aligned} f_{x x} & =24(3)^{2} \\ & =216 \\ & >0 \quad("+") \end{aligned}$ <br> Think: "Concave up" | Local Minimum |

Note 1: The corresponding points of interest on the graph are: $(0,0,0),(-3,-18,-162)$, and $(3,18,-162)$.

Note 2: Instead of using $f_{x x}=24 x^{2}$, it may be easier to use $f_{y y}(x, y)=2$, which is positive everywhere in the $x y$-plane and in particular at $(-3,-18)$ and $(3,18)$.

Here are graphs. The second graph zooms in on the saddle point at the origin.

9) The function $f$, where $f(x, y, z)=(x-3)^{2}+(y-5)^{2}+(z-7)^{2}$, gives the squared distance of the point $(x, y, z)$ from the point $(3,5,7)$ in $x y z$-space. Using the method of Lagrange multipliers, find the point on the unit sphere $x^{2}+y^{2}+z^{2}=1$ that is closest to the point $(3,5,7)$. The point will lie in Octant I; you may use this fact without proof. You do not have to prove that your candidate point corresponds to an absolute minimum of $f$ under the constraint. Give an exact, simplified answer, and rationalize denominators. (25 points)

Take the constraint equation, and isolate 0 on one side:

$$
\begin{array}{r}
x^{2}+y^{2}+z^{2}=1 \\
\underbrace{x^{2}+y^{2}+z^{2}-1}_{g(x, y, z)}=0
\end{array}
$$

Solve $\left\{\begin{aligned} \nabla f(x, y, z) & =\lambda \nabla g(x, y, z) \\ g(x, y, z) & =0\end{aligned}\right.$

$$
\begin{aligned}
\nabla f(x, y, z) & =\lambda \nabla g(x, y, z) \\
\left\langle f_{x}(x, y, z), f_{y}(x, y, z), f_{z}(x, y, z)\right\rangle & =\lambda\left\langle g_{x}(x, y, z), g_{y}(x, y, z), g_{z}(x, y, z)\right\rangle \\
\langle 2(x-3), 2(y-5), 2(z-7)\rangle & =\lambda\langle 2 x, 2 y, 2 z\rangle
\end{aligned}
$$

Solve $\left\{\begin{array}{rlr}2(x-3) & =\lambda(2 x) & \\ 2(\text { Eq. } 1) \\ 2(y-5) & =\lambda(2 y) & \\ 2(\text { Eq. } 2) \\ \left.x^{2}+7\right) & =\lambda(2 z) & \\ (\text { Eq.3 }) \\ y^{2}+z^{2}-1 & =0 & \\ \text { (Eq.C) }\end{array}\right.$

Solve the first three equations for $\lambda$. Observe that $x=0, y=0$, and $z=0$ cannot solve the first three equations, so we may assume that $x, y$, and $z$ are nonzero.

$$
\begin{aligned}
& \text { (Eq.1) } \Rightarrow \lambda=\frac{2(x-3)}{2 x} \Rightarrow \lambda=\frac{x-3}{x} \\
& \text { (Eq.2) } \Rightarrow \lambda=\frac{2(y-5)}{2 y} \Rightarrow \lambda=\frac{y-5}{y} \\
& \text { (Eq.3) } \Rightarrow \lambda=\frac{2(z-7)}{2 z} \Rightarrow \lambda=\frac{z-7}{z}
\end{aligned}
$$

Equate our expressions for $\lambda$.

$$
\lambda=\frac{x-3}{x}=\frac{y-5}{y}=\frac{z-7}{z}
$$

We may then solve for $y$ and $z$ in terms of $x$.
Remember that we may assume that $x, y$, and $z$ are nonzero.

$$
\begin{array}{rlrl}
\frac{x-3}{x} & =\frac{y-5}{y} & \frac{x-3}{x} & =\frac{z-7}{z} \\
\nless y\left(\frac{x-3}{\not x}\right) & =x \not p\left(\frac{y-5}{\not x}\right) & \not x z\left(\frac{x-3}{\not x}\right) & =x \not k\left(\frac{z-7}{\not x}\right) \\
y(x-3) & =x(y-5) & z(x-3) & =x(z-7) \\
\not y y-3 y & =\not x y-5 x & \not z-3 z & =\not\langle z-7 x \\
-3 y & =-5 x & -3 z & =-7 x \\
y & =\frac{5}{3} x & z & =\frac{7}{3} x
\end{array}
$$

Substitute $y=\frac{5}{3} x$ and $z=\frac{7}{3} x$ into (Eq.C).

$$
\begin{aligned}
x^{2}+y^{2}+z^{2}-1 & =0, \quad y=\frac{5}{3} x \text { and } z=\frac{7}{3} x \Rightarrow \\
x^{2}+\left(\frac{5}{3} x\right)^{2}+\left(\frac{7}{3} x\right)^{2}-1 & =0 \\
x^{2}+\frac{25}{9} x^{2}+\frac{49}{9} x^{2}-1 & =0 \\
\frac{9}{9} x^{2}+\frac{25}{9} x^{2}+\frac{49}{9} x^{2} & =1 \\
\frac{83}{9} x^{2} & =1 \\
x^{2} & =\frac{9}{83} \\
x & = \pm \sqrt{\frac{9}{83}} \\
x & = \pm \frac{3}{\sqrt{83}} \\
x & = \pm \frac{3 \sqrt{83}}{83} \\
\text { Take } x & =\frac{3 \sqrt{83}}{83} . \quad \text { (We restrict our attention to Octant I.) }
\end{aligned}
$$

Find our candidate point. Remember: $y=\frac{5}{3} x$ and $z=\frac{7}{3} x$.
$x=\frac{3 \sqrt{83}}{83} \Rightarrow y=\frac{5}{\not p}\left(\frac{p \sqrt{83}}{83}\right)=\frac{5 \sqrt{83}}{83} \quad$ and $\quad z=\frac{7}{\not p}\left(\frac{\not p \sqrt{83}}{83}\right)=\frac{7 \sqrt{83}}{83}$.
Candidate point: $\left(\frac{3 \sqrt{83}}{83}, \frac{5 \sqrt{83}}{83}, \frac{7 \sqrt{83}}{83}\right)$.

Our candidate is in the domain of $f$, which is $\mathbf{R}^{3}$.

If we had not restricted our attention to Octant I, we would have obtained two candidate points: $\left(\frac{3 \sqrt{83}}{83}, \frac{5 \sqrt{83}}{83}, \frac{7 \sqrt{83}}{83}\right)$ and $\left(-\frac{3 \sqrt{83}}{83},-\frac{5 \sqrt{83}}{83},-\frac{7 \sqrt{83}}{83}\right)$.
We know that our candidates for local extrema are absolute extrema, because there are only two, the graph of the constraint is a closed surface (in this case, a sphere), and $f$ is continuous on it. We may identify which is the absolute maximum and which is the absolute minimum by evaluating and comparing values of $f$ at these candidate points. It turns out that:

$$
\begin{aligned}
& f\left(\frac{3 \sqrt{83}}{83}, \frac{5 \sqrt{83}}{83}, \frac{7 \sqrt{83}}{83}\right)=84-2 \sqrt{83} \approx 65.8, \text { while } \\
& f\left(-\frac{3 \sqrt{83}}{83},-\frac{5 \sqrt{83}}{83},-\frac{7 \sqrt{83}}{83}\right)=84+2 \sqrt{83} \approx 102.2
\end{aligned}
$$

Therefore, $\left(\frac{3 \sqrt{83}}{83}, \frac{5 \sqrt{83}}{83}, \frac{7 \sqrt{83}}{83}\right)$ is the absolute minimum of $f$ on the given unit sphere. In other words, it is the point on the unit sphere that is closest to the point $(3,5,7)$; the point $\left(\frac{3 \sqrt{83}}{83}, \frac{5 \sqrt{83}}{83}, \frac{7 \sqrt{83}}{83}\right)$ is the point on the sphere that has the absolute minimum squared distance (and therefore the absolute minimum distance) from the point $(3,5,7)$.

Answer: $\left(\frac{3 \sqrt{83}}{83}, \frac{5 \sqrt{83}}{83}, \frac{7 \sqrt{83}}{83}\right)$
Note: Observe that the origin, this point on the sphere, and the point $(3,5,7)$ all lie on a straight line. Our visual intuition leads us to believe that we have, in fact, found the correct point.

