# QUIZ 5 (CHAPTER 18) SOLUTIONS 

MATH 252 - FALL 2006 - KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100\%

Show all work, simplify as appropriate, and use "good form and procedure" (as in class).
Box in your final answers!
No notes or books allowed. A scientific calculator is allowed.

1) $C$ consists of the curves $C_{1}$ and $C_{2}$ in the $x y$-plane. That is, $C=C_{1} \cup C_{2}$. The curve $C_{1}$ is the directed line segment from $(0,0)$ to $(4,2)$, and the curve $C_{2}$ is the portion of the parabola $x=y^{2}$ directed from $(4,2)$ to $(9,3)$. If the force at $(x, y)$ is $\mathbf{F}(x, y)=\left\langle 4 y^{3}, 3 x\right\rangle$, find the work done by $\mathbf{F}$ along $C$.
It is recommended that you write your final answer as a decimal. ( 25 points)
Parameterize $C_{1}$ :

Parametric equations for $C_{1}$ (and $d x$ and $d y$ ) are given by:

$$
\left\{\begin{array}{l}
x=4 t \Rightarrow d x=4 d t \\
y=2 t \Rightarrow d y=2 d t
\end{array} \quad(t: 0 \rightarrow 1)\right.
$$

This is because the displacement vector from $(0,0)$ to $(4,2)$ is given by $\mathbf{v}=\langle 4,2\rangle$. We could also use:

$$
\left\{\begin{array}{l}
x=2 t \Rightarrow d x=2 d t \\
y=t \Rightarrow d y=d t
\end{array} \quad(t: 0 \rightarrow 2)\right.
$$

Parameterize $C_{2}$ :

$$
\left\{\begin{array}{l}
x=t^{2} \Rightarrow d x=2 t d t \\
y=t \quad \Rightarrow \quad d y=d t
\end{array} \quad(t: 2 \rightarrow 3)\right.
$$

Compute the work integral along $C_{1}$ :

$$
\begin{aligned}
\int_{C_{1}} \mathbf{F} \bullet d \mathbf{r} & =\int_{C_{1}}\left\langle 4 y^{3}, 3 x\right\rangle \bullet\langle d x, d y\rangle \\
& =\int_{C_{1}} 4 y^{3} d x+3 x d y \quad\left(\text { Think: } \int_{C_{1}} M d x+N d y\right) \\
& =\int_{0}^{1} 4(2 t)^{3}(4 d t)+3(4 t)(2 d t) \\
& =\int_{0}^{1} 128 t^{3} d t+24 t d t \\
& =\left[32 t^{4}+12 t^{2}\right]_{0}^{1} \\
& =\left[32(1)^{4}+12(1)^{2}\right]-[0] \\
& =[32+12] \\
& =44
\end{aligned}
$$

Compute the work integral along $C_{2}$ :

$$
\begin{aligned}
\int_{C_{2}} \mathbf{F} \bullet d \mathbf{r} & =\int_{C_{2}}\left\langle 4 y^{3}, 3 x\right\rangle \bullet\langle d x, d y\rangle \\
& =\int_{C_{2}} 4 y^{3} d x+3 x d y \\
& =\int_{2}^{3} 4(t)^{3}(2 t d t)+3\left(t^{2}\right)(d t) \\
& =\int_{2}^{3}\left(8 t^{4}+3 t^{2}\right) d t \\
& =\left[\frac{8 t^{5}}{5}+t^{3}\right]_{2}^{3} \\
& =\left[\frac{8(3)^{5}}{5}+(3)^{3}\right]-\left[\frac{8(2)^{5}}{5}+(2)^{3}\right] \\
& =\left[\frac{1944}{5}+27\right]-\left[\frac{256}{5}+8\right] \\
& =\frac{1783}{5} \text { or } 356.6
\end{aligned}
$$

The total work along $C$ is given by:

$$
\begin{aligned}
\int_{C} \mathbf{F} \bullet d \mathbf{r} & =\int_{C_{1}} \mathbf{F} \bullet d \mathbf{r}+\int_{C_{2}} \mathbf{F} \bullet d \mathbf{r} \\
& =44+356.6 \\
& =400.6
\end{aligned}
$$

2) Use the idea of potential functions and the Fundamental Theorem for Line Integrals to show that the following line integral is independent of path in Octant I of $x y z$-space and to evaluate the integral. Show all work, as we have done in class. Use good form. In particular, indicate independent variables for functions; for example, write $f(x, y, z)$ instead of simply $f$. Give an exact, simplified answer; do not approximate.

$$
\int_{(2,1,1)}^{(1,2,3)}(6 x-1) d x+\left(4 e^{2 z}\right) d y+\left(8 y e^{2 z}+\frac{1}{z}\right) d z
$$

(27 points)
This line integral is of the form $\int_{(2,1,1)}^{(1,2,3)} \mathbf{F} \bullet d \mathbf{r}$, where $\mathbf{F}(x, y, z)=\left\langle 6 x-1,4 e^{2 z}, 8 y e^{2 z}+\frac{1}{z}\right\rangle$, if $\mathbf{F}$ is independent of path in Octant I.

Find a potential function $f$ for $\mathbf{F}$ in Octant I .
We require $f_{x}(x, y, z)=6 x-1$
(Partially integrate both sides with respect to $x$.)

$$
\begin{array}{r}
f(x, y, z)=3 x^{2}-x+g(y, z) \\
f_{y}(x, y, z)=g_{y}(y, z)
\end{array}
$$

We require $f_{y}(x, y, z)=4 e^{2 z}$
Then, $g_{y}(y, z)=4 e^{2 z}$
(Partially integrate both sides with respect to $y$.)

$$
\begin{aligned}
g(y, z) & =\left(4 e^{2 z}\right) y+h(z) \\
& =4 y e^{2 z}+h(z) \\
f(x, y, z)=3 x^{2}-x+4 y e^{2 z} & +h(z)
\end{aligned}
$$

Reminder: $f(x, y, z)=3 x^{2}-x+4 y e^{2 z}+h(z)$

$$
\begin{aligned}
f_{z}(x, y, z) & =4 y\left(2 e^{2 z}\right)+h^{\prime}(z) \\
& =8 y e^{2 z}+h^{\prime}(z)
\end{aligned}
$$

We require $f_{z}(x, y, z)=8 y e^{2 z}+\frac{1}{z}$
Then, $h^{\prime}(z)=\frac{1}{z}$
(Integrate both sides with respect to $z$.)

$$
h(z)=\ln z+K
$$

Note: Assume $z>0$, since we restrict ourselves to Octant I.

Then, $f(x, y, z)=3 x^{2}-x+4 y e^{2 z}+\ln z+K \quad($ We can take $K=0$.
This shows that $\mathbf{F}$ is independent of path in Octant I of $x y z$-space. The above steps were all legitimate under the restriction to Octant I.

Evaluate the given line integral using the Fundamental Theorem for Line Integrals.

$$
\begin{aligned}
& \int_{(2,1,1)}^{(1,2,3)} \underbrace{(6 x-1) d x+\left(4 e^{2 z}\right) d y+\left(8 y e^{2 z}+\frac{1}{z}\right) d z}_{=\mathbf{F} \bullet d \mathbf{r}} \\
& =[\underbrace{3 x^{2}-x+4 y e^{2 z}+\ln z}_{=f(x, y, z)}]_{(2,1,1)}^{(1,2,3)} \\
& =\left[3(1)^{2}-(1)+4(2) e^{2(3)}+\ln (3)\right]-\left[3(2)^{2}-(2)+4(1) e^{2(1)}+\ln (1)\right] \\
& =\left[3-1+8 e^{6}+\ln 3\right]-\left[12-2+4 e^{2}+0\right] \\
& =\left[2+8 e^{6}+\ln 3\right]-\left[10+4 e^{2}\right] \\
& =2+8 e^{6}+\ln 3-10-4 e^{2} \\
& =8 e^{6}-4 e^{2}+\ln 3-8
\end{aligned}
$$

3) Let $\mathbf{F}(x, y, z)=3 \mathbf{i}+5 \mathbf{j}-7 \mathbf{k}$. Let $S$ be the portion of the "half" cone $z=\sqrt{x^{2}+y^{2}}$ that is inside the cylinder $x^{2}+y^{2}=4$ but outside the cylinder $x^{2}+y^{2}=1$. Find the flux of $\mathbf{F}$ across $S$, given by $\iint_{S} \mathbf{F} \bullet \mathbf{n} d S$, where $\mathbf{n}$ is always taken to be the unit upper normal to $S$. (25 points)
$S$ is given by $z=f(x, y)$, where $f$ is a nice function outside of $(x=0, y=0)$, at least, so we may rewrite the flux integral as we did in the Notes on 18.5:

$$
\iint_{S} \mathbf{F} \bullet \mathbf{n} d S=\iint_{R_{v y}} \mathbf{F} \bullet \nabla g d A
$$

Set up the $g$ function:

$$
\underbrace{z-\sqrt{x^{2}+y^{2}}}_{=g(x, y, z)}=0 \quad \text { or } \quad \underbrace{z-\left(x^{2}+y^{2}\right)^{1 / 2}}_{=g(x, y, z)}=0
$$

Find $\nabla g$ :

$$
\begin{aligned}
\nabla g=\left\langle g_{x}, g_{y}, g_{z}\right\rangle & \text {, where: } \\
g_{x}(x, y, z) & =-\frac{1}{2}\left(x^{2}+y^{2}\right)^{-1 / 2}\left(\not x_{x}\right) \\
& =-\frac{x}{\sqrt{x^{2}+y^{2}}} \\
g_{y}(x, y, z) & =-\frac{y}{\sqrt{x^{2}+y^{2}}} \text { by algebraic symmetry of } x \text { and } y \text { in } g .
\end{aligned}
$$

Then, $\nabla g(x, y, z)=\left\langle-\frac{x}{\sqrt{x^{2}+y^{2}}},-\frac{y}{\sqrt{x^{2}+y^{2}}}, 1\right\rangle$
Express the flux:

$$
\begin{aligned}
\iint_{S} \mathbf{F} \bullet \mathbf{n} d S & =\iint_{R_{x y}} \mathbf{F} \bullet \nabla g d A \\
& =\iint_{R_{x y}}\langle 3,5,-7\rangle \bullet\left\langle-\frac{x}{\sqrt{x^{2}+y^{2}}},-\frac{y}{\sqrt{x^{2}+y^{2}}}, 1\right\rangle d A \\
& =\iint_{R_{x y}}\left(-\frac{3 x}{\sqrt{x^{2}+y^{2}}}-\frac{5 y}{\sqrt{x^{2}+y^{2}}}-7\right) d A
\end{aligned}
$$

The projection of $S$ (which is called a "frustum of a cone") on the $x y$-plane, $R_{x y}$, is the annulus (ring) bounded by the following two circles centered at the origin: the circle of radius 2 on the outside, and the smaller circle of radius 1 on the inside.


We will express the flux integral in polar coordinates:

$$
\begin{aligned}
\iint_{S} \mathbf{F} \bullet \mathbf{n} d S & =\int_{\theta=0}^{\theta=2 \pi} \int_{r=1}^{r=2}\left(-\frac{3 / \cos \theta}{\not t}-\frac{5 / \sin \theta}{\nmid}-7\right) r d r d \theta \\
& =\int_{\theta=0}^{\theta=2 \pi} \int_{r=1}^{r=2}(-3 \cos \theta-5 \sin \theta-7) r d r d \theta \\
& =\left[\int_{\theta=0}^{\theta=2 \pi}(-3 \cos \theta-5 \sin \theta-7) d \theta\right]\left[\int_{r=1}^{r=2} r d r\right] \\
& =[-3 \sin \theta+5 \cos \theta-7 \theta]_{\theta=0}^{\theta=2 \pi}\left[\frac{r^{2}}{2}\right]_{r=1}^{r=2} \\
& =([-3 \sin (2 \pi)+5 \cos (2 \pi)-7(2 \pi)]-[-3 \sin (0)+5 \cos (0)-7(0)]) . \\
& \left(\frac{(2)^{2}}{2}-\frac{(1)^{2}}{2}\right) \\
& =([-3(0)+5(1)-14 \pi]-[-3(0)+5(1)-0])\left(\frac{3}{2}\right) \\
& =\left([\not p-14 \pi]-[\not \boxed{ })\left(\frac{3}{2}\right)\right. \\
& =-14 \pi\left(\frac{3}{2}\right) \\
& =-21 \pi
\end{aligned}
$$

4) Use the Divergence Theorem to find the flux of $\mathbf{F}(x, y, z)=\langle\ln (y z), 7 y, z\rangle$ through any sphere $S$ of radius 3. (10 points)

$$
\begin{aligned}
& \text { Flux }=\iint_{S} \mathbf{F} \bullet \mathbf{n} d S=\iiint_{Q}(\operatorname{div} \mathbf{F}) d V, \text { where } \\
& \begin{aligned}
\operatorname{div} \mathbf{F} & =\frac{\partial}{\partial x}[\ln (y z)]+\frac{\partial}{\partial y}(7 y)+\frac{\partial}{\partial z}(z) \\
& =0+7+1 \\
& =8
\end{aligned}
\end{aligned}
$$

and $Q$ is the region bounded by $S$.

$$
\begin{aligned}
\text { Flux } & =\iiint_{Q} 8 d V \\
& =8 \iiint_{Q} d V \\
& =8(\text { Volume of } Q) \\
& =8\left(\frac{4}{3} \pi(3)^{3}\right) \\
& \text { since the volume of a sphere of radius } r \text { is } \frac{4}{3} \pi r^{3} \\
& =8(36 \pi) \\
& =288 \pi
\end{aligned}
$$

5) Assume that the hypotheses of Stokes's Theorem (as stated in my 18.7 Notes) are satisfied. In particular, $S$ has equation $z=f(x, y)$ and is a "capping surface" for a piecewise smooth simple closed curve $C$. Fill in the blank: (3 points)

According to Stokes's Theorem, $\oint_{C} \mathbf{F} \bullet \mathbf{T} d s=\iint_{S}(\boldsymbol{\operatorname { c u r l }} \mathbf{F}) \bullet \mathbf{n} d S$

6) Let $\mathbf{F}(x, y, z)=\left\langle y^{2} \sin x, 4 e^{y}+y, x^{3} y z^{3}\right\rangle$. (15 points total)
a) Find $\operatorname{div} \mathbf{F}$.

$$
\begin{aligned}
\operatorname{div} \mathbf{F} & =\nabla \bullet \mathbf{F} \\
& =\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle \bullet\left\langle y^{2} \sin x, 4 e^{y}+y, x^{3} y z^{3}\right\rangle \\
& =\frac{\partial}{\partial x}\left(y^{2} \sin x\right)+\frac{\partial}{\partial y}\left(4 e^{y}+y\right)+\frac{\partial}{\partial z}\left(x^{3} y z^{3}\right) \\
& =y^{2} \cos x+\left(4 e^{y}+1\right)+x^{3} y\left(3 z^{2}\right) \\
& =y^{2} \cos x+4 e^{y}+1+3 x^{3} y z^{2}
\end{aligned}
$$

## b) Find curl $\mathbf{F}$.

$$
\begin{aligned}
\text { curl } \mathbf{F} & =\nabla \times \mathbf{F} \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y^{2} \sin x & 4 e^{y}+y & x^{3} y z^{3}
\end{array}\right| \\
& =\left[\frac{\partial}{\partial y}\left(x^{3} y z^{3}\right)-\frac{\partial}{\partial z}\left(4 e^{y}+y\right)\right] \mathbf{i}-\left[\frac{\partial}{\partial x}\left(x^{3} y z^{3}\right)-\frac{\partial}{\partial z}\left(y^{2} \sin x\right)\right] \mathbf{j}+ \\
& =\left[\frac{\partial}{\partial x}\left(4 e^{y}+y\right)-\frac{\partial}{\partial y}\left(y^{2} \sin x\right)\right] \mathbf{k} \\
& =\left[\begin{array}{l}
\left.x^{3} z^{3}-0\right] \mathbf{i}-\left[3 x^{2} y z^{3}-0\right] \mathbf{j}+[0-2 y \sin x] \mathbf{k} \\
\text { or }\left\langle x^{3} z^{3}\right) \mathbf{i}-\left(3 x^{2} z^{3},-3 z^{3}\right) \mathbf{j}-(2 y \sin x) \mathbf{k} \\
\text { o } \left.^{3},-2 y \sin x\right\rangle
\end{array}\right.
\end{aligned}
$$

