QUIZ 5 (CHAPTER 18) SOLUTIONS

MATH 252 – FALL 2006 – KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100%

Show all work, simplify as appropriate, and use "good form and procedure" (as in class).

Box in your final answers!

No notes or books allowed. A scientific calculator is allowed.

1) C consists of the curves C_1 and C_2 in the xy-plane. That is, $C = C_1 \cup C_2$. The curve C_1 is the directed line segment from (0,0) to (4,2), and the curve C_2 is the portion of the parabola $x = y^2$ directed from (4,2) to (9,3). If the force at (x,y) is $\mathbf{F}(x,y) = \langle 4y^3, 3x \rangle$, find the work done by \mathbf{F} along C. It is recommended that you write your final answer as a decimal. (25 points)

Parameterize C_1 :

Parametric equations for C_1 (and dx and dy) are given by:

$$\begin{cases} x = 4t & \Rightarrow dx = 4 dt \\ y = 2t & \Rightarrow dy = 2 dt \end{cases} \quad (t:0 \to 1)$$

This is because the displacement vector from (0,0) to (4,2) is given by $\mathbf{v} = \langle 4,2 \rangle$. We could also use:

$$\begin{cases} x = 2t & \Rightarrow dx = 2 dt \\ y = t & \Rightarrow dy = dt \end{cases} \quad (t:0 \to 2)$$

Parameterize C_2 :

$$\begin{cases} x = t^2 \implies dx = 2t \ dt \\ y = t \implies dy = dt \end{cases} \quad (t: 2 \to 3)$$

Compute the work integral along C_1 :

$$\int_{C_{1}} \mathbf{F} \bullet d\mathbf{r} = \int_{C_{1}} \left\langle 4y^{3}, 3x \right\rangle \bullet \left\langle dx, dy \right\rangle$$

$$= \int_{C_{1}} 4y^{3} dx + 3x dy \qquad \left(\text{Think: } \int_{C_{1}} M dx + N dy \right)$$

$$= \int_{0}^{1} 4(2t)^{3} (4 dt) + 3(4t)(2 dt)$$

$$= \int_{0}^{1} 128t^{3} dt + 24t dt$$

$$= \left[32t^{4} + 12t^{2} \right]_{0}^{1}$$

$$= \left[32(1)^{4} + 12(1)^{2} \right] - \left[0 \right]$$

$$= \left[32 + 12 \right]$$

$$= 44$$

Compute the work integral along C_2 :

$$\int_{C_2} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \langle 4y^3, 3x \rangle \cdot \langle dx, dy \rangle$$

$$= \int_{C_2} 4y^3 dx + 3x dy$$

$$= \int_{2}^{3} 4(t)^3 (2t dt) + 3(t^2) (dt)$$

$$= \int_{2}^{3} (8t^4 + 3t^2) dt$$

$$= \left[\frac{8t^5}{5} + t^3 \right]_{2}^{3}$$

$$= \left[\frac{8(3)^5}{5} + (3)^3 \right] - \left[\frac{8(2)^5}{5} + (2)^3 \right]$$

$$= \left[\frac{1944}{5} + 27 \right] - \left[\frac{256}{5} + 8 \right]$$

$$= \frac{1783}{5} \text{ or } 356.6$$

The total work along *C* is given by:

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C_{1}} \mathbf{F} \cdot d\mathbf{r} + \int_{C_{2}} \mathbf{F} \cdot d\mathbf{r}$$
$$= 44 + 356.6$$
$$= \boxed{400.6}$$

2) Use the idea of potential functions and the Fundamental Theorem for Line Integrals to show that the following line integral is independent of path in Octant I of xyz-space and to evaluate the integral. Show all work, as we have done in class. Use good form. In particular, indicate independent variables for functions; for example, write f(x, y, z) instead of simply f. Give an exact, simplified answer; do **not** approximate.

$$\int_{(2,1,1)}^{(1,2,3)} (6x-1) dx + (4e^{2z}) dy + \left(8ye^{2z} + \frac{1}{z}\right) dz$$

(27 points)

This line integral is of the form $\int_{(2,1,1)}^{(1,2,3)} \mathbf{F} \bullet d\mathbf{r}$, where

$$\mathbf{F}(x,y,z) = \left\langle 6x - 1, 4e^{2z}, 8ye^{2z} + \frac{1}{z} \right\rangle$$
, if **F** is independent of path in Octant I.

Find a potential function f for \mathbf{F} in Octant I.

We require
$$f_x(x, y, z) = 6x - 1$$

(Partially integrate both sides with respect to x.)

$$f(x,y,z) = 3x^2 - x + g(y,z)$$

$$f_y(x,y,z) = g_y(y,z)$$

We require
$$f_v(x, y, z) = 4e^{2z}$$

Then,
$$g_{v}(y,z) = 4e^{2z}$$

(Partially integrate both sides with respect to y.)

$$g(y,z) = (4e^{2z})y + h(z)$$
$$= 4ye^{2z} + h(z)$$

$$f(x, y, z) = 3x^2 - x + 4ye^{2z} + h(z)$$

Reminder:
$$f(x, y, z) = 3x^2 - x + 4ye^{2z} + h(z)$$

$$f_z(x, y, z) = 4y(2e^{2z}) + h'(z)$$
$$= 8ye^{2z} + h'(z)$$

We require
$$f_z(x, y, z) = 8ye^{2z} + \frac{1}{z}$$

Then,
$$h'(z) = \frac{1}{z}$$

(Integrate both sides with respect to z.)

$$h(z) = \ln z + K$$

Note: Assume z > 0, since we restrict ourselves to Octant I.

Then,
$$f(x, y, z) = 3x^2 - x + 4ye^{2z} + \ln z + K$$
 (We can take $K = 0$.)

This shows that **F** is independent of path in Octant I of *xyz*-space. The above steps were all legitimate under the restriction to Octant I.

Evaluate the given line integral using the Fundamental Theorem for Line Integrals.

$$\int_{(2,1,1)}^{(1,2,3)} \underbrace{\left(6x-1\right) dx + \left(4e^{2z}\right) dy + \left(8ye^{2z} + \frac{1}{z}\right) dz}_{=\mathbf{F} \bullet d\mathbf{r}}$$

$$= \left[\underbrace{3x^2 - x + 4ye^{2z} + \ln z}_{=f(x,y,z)}\right]_{(2,1,1)}^{(1,2,3)}$$

$$= \left[3(1)^2 - (1) + 4(2)e^{2(3)} + \ln(3)\right] - \left[3(2)^2 - (2) + 4(1)e^{2(1)} + \ln(1)\right]$$

$$= \left[3 - 1 + 8e^6 + \ln 3\right] - \left[12 - 2 + 4e^2 + 0\right]$$

$$= \left[2 + 8e^6 + \ln 3\right] - \left[10 + 4e^2\right]$$

$$= 2 + 8e^6 + \ln 3 - 10 - 4e^2$$

$$= \left[8e^6 - 4e^2 + \ln 3 - 8\right]$$

3) Let $\mathbf{F}(x,y,z) = 3\mathbf{i} + 5\mathbf{j} - 7\mathbf{k}$. Let S be the portion of the "half" cone $z = \sqrt{x^2 + y^2}$ that is inside the cylinder $x^2 + y^2 = 4$ but outside the cylinder $x^2 + y^2 = 1$. Find the flux of \mathbf{F} across S, given by $\iint_S \mathbf{F} \cdot \mathbf{n} \, dS$, where \mathbf{n} is always taken to be the unit upper normal to S. (25 points)

S is given by z = f(x, y), where f is a nice function outside of (x = 0, y = 0), at least, so we may rewrite the flux integral as we did in the Notes on 18.5:

$$\iint_{S} \mathbf{F} \bullet \mathbf{n} \ dS = \iint_{R_{on}} \mathbf{F} \bullet \nabla g \ dA$$

Set up the *g* function:

$$\underbrace{z - \sqrt{x^2 + y^2}}_{=g(x, y, z)} = 0 \qquad \text{or} \qquad \underbrace{z - \left(x^2 + y^2\right)^{1/2}}_{=g(x, y, z)} = 0$$

Find ∇g :

$$\nabla g = \left\langle g_x, g_y, g_z \right\rangle, \text{ where:}$$

$$g_x(x, y, z) = -\frac{1}{12} \left(x^2 + y^2 \right)^{-1/2} \left(\cancel{Z} x \right)$$

$$= -\frac{x}{\sqrt{x^2 + y^2}}$$

 $g_y(x, y, z) = -\frac{y}{\sqrt{x^2 + y^2}}$ by algebraic symmetry of x and y in g.

Then,
$$\nabla g(x,y,z) = \left\langle -\frac{x}{\sqrt{x^2 + y^2}}, -\frac{y}{\sqrt{x^2 + y^2}}, 1 \right\rangle$$

Express the flux:

$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \iint_{R_{xy}} \mathbf{F} \cdot \nabla g \, dA$$

$$= \iint_{R_{xy}} \left\langle 3, 5, -7 \right\rangle \cdot \left\langle -\frac{x}{\sqrt{x^2 + y^2}}, -\frac{y}{\sqrt{x^2 + y^2}}, 1 \right\rangle dA$$

$$= \iint_{R_{xy}} \left(-\frac{3x}{\sqrt{x^2 + y^2}} - \frac{5y}{\sqrt{x^2 + y^2}} - 7 \right) dA$$

The projection of S (which is called a "frustum of a cone") on the xy-plane, R_{xy} , is the annulus (ring) bounded by the following two circles centered at the origin: the circle of radius 2 on the outside, and the smaller circle of radius 1 on the inside.

We will express the flux integral in polar coordinates:

$$\iint_{S} \mathbf{F} \bullet \mathbf{n} \, dS = \int_{\theta=0}^{\theta=2\pi} \int_{r=1}^{r=2} \left(-\frac{3\cancel{r} \cos\theta}{\cancel{r}} - \frac{5\cancel{r} \sin\theta}{\cancel{r}} - 7 \right) r \, dr \, d\theta$$

$$= \int_{\theta=0}^{\theta=2\pi} \int_{r=1}^{r=2} \left(-3\cos\theta - 5\sin\theta - 7 \right) r \, dr \, d\theta$$

$$= \left[\int_{\theta=0}^{\theta=2\pi} \left(-3\cos\theta - 5\sin\theta - 7 \right) d\theta \right] \left[\int_{r=1}^{r=2} r \, dr \right]$$

$$= \left[-3\sin\theta + 5\cos\theta - 7\theta \right]_{\theta=0}^{\theta=2\pi} \left[\frac{r^2}{2} \right]_{r=1}^{r=2}$$

$$= \left(\left[-3\sin(2\pi) + 5\cos(2\pi) - 7(2\pi) \right] - \left[-3\sin(0) + 5\cos(0) - 7(0) \right] \right) \cdot \left(\frac{\left(2 \right)^2}{2} - \frac{\left(1 \right)^2}{2} \right)$$

$$= \left(\left[-3(0) + 5(1) - 14\pi \right] - \left[-3(0) + 5(1) - 0 \right] \right) \left(\frac{3}{2} \right)$$

$$= \left(\left[\cancel{\beta} - 14\pi \right] - \left[\cancel{\beta} \cancel{\beta} \right] \right) \left(\frac{3}{2} \right)$$

$$= -14\pi \left(\frac{3}{2} \right)$$

$$= \left(-21\pi \right)$$

4) Use the Divergence Theorem to find the flux of $\mathbf{F}(x, y, z) = \langle \ln(yz), 7y, z \rangle$ through any sphere *S* of radius 3. (10 points)

Flux =
$$\iint_{S} \mathbf{F} \cdot \mathbf{n} \ dS = \iiint_{Q} (\text{div } \mathbf{F}) \ dV$$
, where

div
$$\mathbf{F} = \frac{\partial}{\partial x} \left[\ln(yz) \right] + \frac{\partial}{\partial y} (7y) + \frac{\partial}{\partial z} (z)$$

= 0 + 7 + 1
= 8

and Q is the region bounded by S.

Flux =
$$\iint_{Q} 8 \, dV$$
= $8 \iiint_{Q} dV$
= $8 \text{ (Volume of } Q \text{)}$
= $8 \left(\frac{4}{3} \pi (3)^{3} \right)$

since the volume of a sphere of radius r is $\frac{4}{3}\pi r^3$

$$= 8(36\pi)$$
$$= 288\pi$$

5) Assume that the hypotheses of Stokes's Theorem (as stated in my 18.7 Notes) are satisfied. In particular, S has equation z = f(x, y) and is a "capping surface" for a piecewise smooth simple closed curve C. Fill in the blank: (3 points)

According to Stokes's Theorem,
$$\oint_C \mathbf{F} \cdot \mathbf{T} ds = \iint_S (\mathbf{curl} \, \mathbf{F}) \cdot \mathbf{n} dS$$

Or, given our setup,
$$\oint_C \mathbf{F} \bullet \mathbf{T} ds = \iint_{R_{xy}} (\mathbf{curl} \, \mathbf{F}) \bullet \nabla g \, dA$$

6) Let $\mathbf{F}(x, y, z) = \langle y^2 \sin x, 4e^y + y, x^3 y z^3 \rangle$. (15 points total)

a) Find div F.

div
$$\mathbf{F} = \nabla \cdot \mathbf{F}$$

$$= \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle \cdot \left\langle y^2 \sin x, 4e^y + y, x^3 y z^3 \right\rangle$$

$$= \frac{\partial}{\partial x} \left(y^2 \sin x \right) + \frac{\partial}{\partial y} \left(4e^y + y \right) + \frac{\partial}{\partial z} \left(x^3 y z^3 \right)$$

$$= y^2 \cos x + \left(4e^y + 1 \right) + x^3 y \left(3z^2 \right)$$

$$= y^2 \cos x + 4e^y + 1 + 3x^3 y z^2$$

b) Find curl F.

curl
$$\mathbf{F} = \nabla \times \mathbf{F}$$

$$= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^2 \sin x & 4e^y + y & x^3 y z^3 \end{vmatrix}$$

$$= \left[\frac{\partial}{\partial y} (x^3 y z^3) - \frac{\partial}{\partial z} (4e^y + y) \right] \mathbf{i} - \left[\frac{\partial}{\partial x} (x^3 y z^3) - \frac{\partial}{\partial z} (y^2 \sin x) \right] \mathbf{j} + \left[\frac{\partial}{\partial x} (4e^y + y) - \frac{\partial}{\partial y} (y^2 \sin x) \right] \mathbf{k}$$

$$= \left[x^3 z^3 - 0 \right] \mathbf{i} - \left[3x^2 y z^3 - 0 \right] \mathbf{j} + \left[0 - 2y \sin x \right] \mathbf{k}$$

$$= \left[(x^3 z^3) \mathbf{i} - (3x^2 y z^3) \mathbf{j} - (2y \sin x) \mathbf{k} \right]$$
or $\langle x^3 z^3, -3x^2 y z^3, -2y \sin x \rangle$