QUIZ 5 (CHAPTER 18)
 SOLUTIONS
 MATH 252 - FALL 2008 - KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100\%

Show all work, simplify as appropriate, and use "good form and procedure" (as in class).
Box in your final answers!
No notes or books allowed. A scientific calculator is allowed.

1) Matching. (9 points total)

Fill in each blank below with a true property describing the vector field \mathbf{F}. (Assume that we are only evaluating \mathbf{F} on its domain.)
A. The vectors in the field all have the same direction.
B. The non- $\mathbf{0}$ vectors in the field all point away from the origin.
C. The vectors in the field are all unit vectors.
I. $\mathbf{F}(x, y)=x \mathbf{i}+y \mathbf{j}$. It is true that \qquad B .

If a point (a, b) is the initial point for $\langle a, b\rangle$, the position vector to the point, then that vector will point away from the origin.
II. $\mathbf{F}(x, y)=2 \mathbf{i}+3 \mathbf{j}$. It is true that \qquad A .
\mathbf{F} is a constant vector field.
III. $\mathbf{F}(x, y)=\frac{1}{\sqrt{x^{2}+y^{2}}}(-x \mathbf{i}-y \mathbf{j})$. It is true that $_\underline{\mathbf{C}}$.

$$
\begin{aligned}
\|-x \mathbf{i}-y \mathbf{j}\| & =\sqrt{(-x)^{2}+(-y)^{2}} \\
& =\sqrt{x^{2}+y^{2}}
\end{aligned}
$$

Thus, $\mathbf{F}(x, y)=\frac{-x \mathbf{i}-y \mathbf{j}}{\|-x \mathbf{i}-y \mathbf{j}\|}$. This represents a normalization process.
2) Let $\mathbf{F}(x, y, z)=\left\langle x^{2} e^{2 z}, \cos (3 y), x y^{2} z^{3}-x\right\rangle \cdot(20$ points total $)$
a) Find $\operatorname{div} \mathbf{F}$.

$$
\begin{aligned}
\operatorname{div} \mathbf{F} & =\nabla \bullet \mathbf{F} \\
& =\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle \bullet\left\langle x^{2} e^{2 z}, \cos (3 y), x y^{2} z^{3}-x\right\rangle \\
& =\frac{\partial}{\partial x}\left(x^{2} e^{2 z}\right)+\frac{\partial}{\partial y}(\cos (3 y))+\frac{\partial}{\partial z}\left(x y^{2} z^{3}-x\right) \\
& =\left[(2 x)\left(e^{2 z}\right)\right]+[-3 \sin (3 y)]+\left[\left(x y^{2}\right)\left(3 z^{2}\right)\right] \\
& =2 x e^{2 z}-3 \sin (3 y)+3 x y^{2} z^{2}
\end{aligned}
$$

b) Find curl \mathbf{F}.

$$
\begin{aligned}
\text { curl } \mathbf{F} & =\nabla \times \mathbf{F} \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x^{2} e^{2 z} & \cos (3 y) & x y^{2} z^{3}-x
\end{array}\right| \\
& =\left[\frac{\partial}{\partial y}\left(x y^{2} z^{3}-x\right)-\frac{\partial}{\partial z}(\cos (3 y))\right] \mathbf{i}-\left[\frac{\partial}{\partial x}\left(x y^{2} z^{3}-x\right)-\frac{\partial}{\partial z}\left(x^{2} e^{2 z}\right)\right] \mathbf{j}+ \\
& {\left[\begin{array}{ll}
\left.\frac{\partial}{\partial x}(\cos (3 y))-\frac{\partial}{\partial y}\left(x^{2} e^{2 z}\right)\right] \mathbf{k}
\end{array}\right.} \\
& =\left[\begin{array}{l}
\left.\left(x z^{3}\right)(2 y)-0\right] \mathbf{i}-\left[\left(y^{2} z^{3}-1\right)-\left(x^{2}\right)\left(2 e^{2 z}\right)\right] \mathbf{j}+[0-0] \mathbf{k} \\
\left(2 x y z^{3}\right) \mathbf{i}-\left(y^{2} z^{3}-1-2 x^{2} e^{2 z}\right) \mathbf{j} \\
\text { or }\left\langle 2 x y z^{3},-y^{2} z^{3}+1+2 x^{2} e^{2 z}, 0\right\rangle \\
\text { or }\left\langle 2 x y z^{3}, 2 x^{2} e^{2 z}-y^{2} z^{3}+1,0\right\rangle
\end{array}\right]
\end{aligned}
$$

3) C consists of the curves C_{1} and C_{2} in $x y z$-space. That is, $C=C_{1} \cup C_{2}$. The curve C_{1} is the directed line segment from $(0,2,3)$ to $(2,8,4)$, and the curve C_{2} is the portion of the graph of $y=x^{3}$ in the plane $z=4$ directed from $(2,8,4)$ to $(3,27,4)$. If the force at (x, y, z) is $\mathbf{F}(x, y, z)=\langle x y, z+4,3\rangle$, find the work done by \mathbf{F} along C. It is recommended that you write your final answer as a decimal. Hint: If you want, you can analyze C_{2} first. (32 points)

Parameterize C_{1} :
The displacement vector from $(0,2,3)$ to $(2,8,4)$ is given by:

$$
\begin{aligned}
\mathbf{v} & =\langle 2-0,8-2,4-3\rangle \\
& =\langle 2,6,1\rangle
\end{aligned}
$$

Parametric equations for C_{1} (and $d x, d y$ and $d z$) are given by:

$$
\left\{\begin{array}{ll}
x=2 t & \Rightarrow d x=2 d t \\
y=2+6 t & \Rightarrow d y=6 d t \\
z=3+t & \Rightarrow d z=d t
\end{array} \quad(t: 0 \rightarrow 1)\right.
$$

Parameterize C_{2} :

$$
\left\{\begin{array}{lll}
x=t & \Rightarrow d x=d t \\
y=t^{3} & \Rightarrow d y=3 t^{2} d t \quad(t: 2 \rightarrow 3) \\
z=4 & \Rightarrow d z=0
\end{array}\right.
$$

Compute the work integral along C_{1} :

$$
\begin{aligned}
\int_{C_{1}} \mathbf{F} \bullet d \mathbf{r} & =\int_{C_{1}}\langle x y, z+4,3\rangle \bullet\langle d x, d y, d z\rangle \\
& =\int_{C_{1}} x y d x+(z+4) d y+3 d z \quad\left(\text { Think: } \int_{C_{1}} M d x+N d y+P d z\right) \\
& =\int_{0}^{1}(2 t)(2+6 t)(2 d t)+((3+t)+4)(6 d t)+3(d t) \\
& =\int_{0}^{1}\left(8 t+24 t^{2}\right) d t+(42+6 t) d t+3 d t \\
& =\int_{0}^{1}\left(24 t^{2}+14 t+45\right) d t \\
& =\left[24\left(\frac{t^{3}}{3}\right)+14\left(\frac{t^{2}}{2}\right)+45 t\right]_{0}^{1}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[8 t^{3}+7 t^{2}+45 t\right]_{0}^{1} \\
& =\left[8(1)^{3}+7(1)^{2}+45(1)\right]-[0] \\
& =[8+7+45] \\
& =60
\end{aligned}
$$

Compute the work integral along C_{2} :

$$
\begin{aligned}
\int_{C_{2}} \mathbf{F} \bullet d \mathbf{r} & =\int_{C_{2}}\langle x y, z+4,3\rangle \bullet\langle d x, d y, d z\rangle \\
& =\int_{C_{2}} x y d x+(z+4) d y+3 d z \quad\left(\text { Think: } \int_{C_{1}} M d x+N d y+P d z\right) \\
& =\int_{2}^{3}(t)\left(t^{3}\right)(d t)+((4)+4)\left(3 t^{2} d t\right)+3(0) \\
& =\int_{2}^{3}\left(t^{4} d t\right)+\left(24 t^{2} d t\right) \\
& =\int_{2}^{3}\left(t^{4}+24 t^{2}\right) d t \\
& =\left[\frac{t^{5}}{5}+24\left(\frac{t^{3}}{3}\right)\right]_{2}^{3} \\
& =\left[\frac{t^{5}}{5}+8 t^{3}\right]_{2}^{3} \\
& =\left[\frac{(3)^{5}}{5}+8(3)^{3}\right]-\left[\frac{(2)^{5}}{5}+8(2)^{3}\right] \\
& =[48.6+216]-[6.4+64] \\
& =264.6-70.4 \\
& =194.2 \text { or } \frac{971}{5}
\end{aligned}
$$

The total work along C is given by:

$$
\begin{aligned}
\int_{C} \mathbf{F} \bullet d \mathbf{r} & =\int_{C_{1}} \mathbf{F} \bullet d \mathbf{r}+\int_{C_{2}} \mathbf{F} \bullet d \mathbf{r} \\
& =60+194.2 \\
& =254.2 \text { or } \frac{1271}{5} \text { (work units) }
\end{aligned}
$$

4) Find the exact mass of a thin wire C in $x y z$-space if the density at any point (x, y, z) where $x \geq 0$ is given by $\delta(x, y, z)=5 x$ (i.e., five times the point's distance from the $y z$-plane), and if C is parameterized by $x=3 \cos t, y=3 \sin t$, and $y=7 t$, where $0 \leq t \leq \frac{\pi}{4}$. (17 points)

$$
\text { mass, } \begin{aligned}
m & =\int_{C} \delta(x, y, z) d s \\
& =\int_{C} 5 x \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t \\
& =\int_{0}^{\frac{\pi}{4}} 5(3 \cos t) \sqrt{(-3 \sin t)^{2}+(3 \cos t)^{2}+(7)^{2}} d t \\
& =\int_{0}^{\frac{\pi}{4}}(15 \cos t) \sqrt{9 \sin ^{2} t+9 \cos ^{2} t+49} d t \\
& =\int_{0}^{\frac{\pi}{4}}(15 \cos t) \sqrt{9(\underbrace{\sin ^{2} t+\cos ^{2} t}_{=1})+49} d t \\
& =\int_{0}^{\frac{\pi}{4}}(15 \cos t) \sqrt{58} d t \\
& =15 \sqrt{58} \int_{0}^{\frac{\pi}{4}} \cos t d t \\
& =15 \sqrt{58}[\sin t]_{0}^{\frac{\pi}{4}} \\
& =15 \sqrt{58}\left(\sin \frac{\pi}{4}-\sin 0\right) \\
& =15 \sqrt{58}\left(\frac{\sqrt{2}}{2}-0\right) \\
& =15 \sqrt{58}\left(\frac{\sqrt{2}}{2}\right) \\
& =15 \sqrt{29} \cdot \sqrt{2} \times \underbrace{2} \\
& =15 \sqrt{29}(\operatorname{mass} \text { units)}
\end{aligned}
$$

Note: $15 \sqrt{29} \approx 80.7775$
5) Use the idea of potential functions and the Fundamental Theorem for Line Integrals to show that the following line integral is independent of path in $x y z$-space and to evaluate the integral. Show all work, as we have done in class. Use good form. In particular, indicate independent variables for functions; for example, write $f(x, y, z)$ instead of simply f. Give an exact, simplified answer; do not approximate.

$$
\int_{(-1,0,2)}^{(3,4)}\left(4 y^{2}+z\right) d x+\left(8 x y-3 z e^{3 y}\right) d y+\left(x-e^{3 y}+3 z^{2}\right) d z
$$

(27 points)
This line integral is of the form $\int_{(-1,0,2)}^{(3,4)} \mathbf{F} \bullet d \mathbf{r}$, where $\mathbf{F}(x, y, z)=\left\langle 4 y^{2}+z, 8 x y-3 z e^{3 y}, x-e^{3 y}+3 z^{2}\right\rangle$, if \mathbf{F} is independent of path in $x y z-$ space.

Find a potential function f for \mathbf{F} in $x y z$-space.
Compare:

$$
f_{x}(x, y, z)=4 y^{2}+z
$$

Integrate: Partially integrate both sides with respect to x.

$$
f(x, y, z)=4 x y^{2}+x z+g(y, z)
$$

Differentiate: Differentiate both sides with respect to y.

$$
\begin{aligned}
f_{y}(x, y, z) & =(4 x)(2 y)+g_{y}(y, z) \\
& =8 x y+g_{y}(y, z)
\end{aligned}
$$

Compare:
We require $f_{y}(x, y, z)=8 x y-3 z e^{3 y}$
Then, $g_{y}(y, z)=-3 z e^{3 y}$
Integrate: Partially integrate both sides with respect to y.

$$
\begin{aligned}
g(y, z) & =(-3 z)\left(\frac{1}{3} e^{3 y}\right)+h(z) \\
& =-z e^{3 y}+h(z)
\end{aligned}
$$

Rewrite:

$$
f(x, y, z)=4 x y^{2}+x z-z e^{3 y}+h(z)
$$

Differentiate: Differentiate both sides with respect to z.

$$
f_{z}(x, y, z)=x-e^{3 y}+h^{\prime}(z)
$$

Compare:

We require $f_{z}(x, y, z)=x-e^{3 y}+3 z^{2}$
Then, $h^{\prime}(z)=3 z^{2}$

Integrate: Integrate both sides with respect to z.

$$
h(z)=z^{3}+K
$$

Rewrite:

$$
f(x, y, z)=4 x y^{2}+x z-z e^{3 y}+z^{3}+K
$$

We can take $K=0$.
The existence of a potential shows that \mathbf{F} is independent of path throughout $x y z$-space.
Evaluate the given line integral using the Fundamental Theorem for Line Integrals.

$$
\begin{aligned}
& \int_{(-1,0,2)}^{(3,4,1)} \mathbf{F} \bullet d \mathbf{r} \\
& =\int_{(-1,0,2)}^{(3,4,1)}\left(4 y^{2}+z\right) d x+\left(8 x y-3 z e^{3 y}\right) d y+\left(x-e^{3 y}+3 z^{2}\right) d z \\
& =[f(x, y, z)]_{(-1,0,2)}^{(3,4,1)} \\
& =\left[4 x y^{2}+x z-z e^{3 y}+z^{3}\right]_{(-1,0,2)}^{(3,4,1)} \\
& =\left[4(3)(4)^{2}+(3)(1)-(1) e^{3(4)}+(1)^{3}\right]-\left[4(-1)(0)^{2}+(-1)(2)-(2) e^{3(0)}+(2)^{3}\right] \\
& =\left[192+3-e^{12}+1\right]-[0-2-2+8] \\
& =\left[196-e^{12}\right]-[4] \\
& =192-e^{12}
\end{aligned}
$$

Note: $192-e^{12} \approx-162,563$. Forces are really working against us!

