SOLUTIONS TO THE FINAL

MATH 252 - FALL 2006 - KUNIYUKI
60 POINTS TOTAL (15 PROBLEMS; 4 POINTS EACH)
No books allowed. An appropriate sheet of notes and a scientific calculator are allowed.

1) What is the geometric definition of the dot product of two vectors \mathbf{a} and \mathbf{b} in V_{n} ? Circle one:
a) $\mathbf{a} \bullet \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta$
b) $\mathbf{a} \bullet \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \sin \theta$
c) $\mathbf{a} \bullet \mathbf{b}=\|\mathbf{a}\|\|\mathbf{b}\| \tan \theta$
2) Give symmetric equations for the line in $x y z$-space that passes through the point $(7,4,-2)$ and that has direction vector $3 \mathbf{i}-2 \mathbf{j}+\mathbf{k}$.

$$
\frac{x-7}{3}=\frac{y-4}{-2}=\frac{z+2}{1}
$$

3) The graph of $3 x^{2}+4 y^{2}-z=0$ in $x y z$-space is \ldots (circle one):
a) A Cone
b) An Ellipsoid
c) An Elliptic Paraboloid
d) A Hyperbolic Paraboloid
e) A Hyperboloid of One Sheet
f) A Hyperboloid of Two Sheets

Think: $z=3 x^{2}+4 y^{2}$ or simply $z=x^{2}+y^{2}$ for identification purposes.
4) A plane curve C is parameterized by \mathbf{r}, a smooth vector-valued function of t, from $t=a$ to $t=b$, where $a<b$. The curve does not overlap itself. Which of the following will give you the arc length of C ? Circle one:
a) $\int_{a}^{b}\|\mathbf{r}(t)\| d t$
b) $\int_{a}^{b}\left\|\mathbf{r}^{\prime}(t)\right\| d t$
c) $\int_{a}^{b}\left\|\mathbf{r}^{\prime \prime}(t)\right\| d t$
5) True or False: If \mathbf{v} is a "nice" everywhere differentiable vector-valued function of $t, D_{t}[\mathbf{v}(t) \bullet \mathbf{v}(t)]=2\left[\mathbf{v}^{\prime}(t) \bullet \mathbf{v}(t)\right]$. Circle one:

$$
\begin{aligned}
& \text { True } \\
& D_{t}[\mathbf{v}(t) \cdot \mathbf{v}(t)]=\left[\mathbf{v}^{\prime}(t) \cdot \mathbf{v}(t)\right]+\left[\mathbf{v}(t) \bullet \mathbf{v}^{\prime}(t)\right] \quad \text { False } \\
&=2\left[\mathbf{v}^{\prime}(t) \cdot \mathbf{v}(t)\right]
\end{aligned}
$$

6) Two of the following are expressions for curvature that we have covered in class. Circle those two, and only those two.
a) $\left\|\frac{d \mathbf{r}}{d s}\right\|$
d) $\frac{\left\|\mathbf{r}(t) \times \mathbf{r}^{\prime}(t)\right\|}{\|\mathbf{r}(t)\|^{3}}$
b) $\left\|\frac{d \mathbf{T}}{d s}\right\|$
c) $\left\|\frac{d \mathbf{N}}{d s}\right\|$
7) Let f be a "nice" differentiable function of x and y. Give the limit definition of $f_{y}(x, y)$.

$$
f_{y}(x, y)=\lim _{h \rightarrow 0} \frac{f(x, y+h)-f(x, y)}{h}
$$

8) Let S be the graph of $F(x, y, z)=0$, where $\nabla F(x, y, z)$ is continuous. If $\nabla F(2,-1,3)=\langle 6,2,3\rangle$, write an equation for the tangent plane to S at $(2,-1,3)$.

$$
\begin{aligned}
6(x-2)+2(y-(-1))+3(z-3) & =0 & & \text { or } \\
6(x-2)+2(y+1)+3(z-3) & =0 & & \text { or } \\
6 x+2 y+3 z & =19 & &
\end{aligned}
$$

9) Let f be a "nice" function of x and y with continuous second-order partial derivatives. Let $D=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}$. The point $(-1,-3)$ is a critical point of f where $D=-20$ and $f_{x x}=5$. Which one of the following does f have at $(-1,-3)$? Circle one:
a) A local maximum
b) A local minimum
c) A saddle point

This is because $D<0$ at the critical point.
10) Express $d V$ in cylindrical coordinates.

$$
d V=r d z d r d \theta
$$

11) Express $d V$ in spherical coordinates.

$$
d V=\rho^{2} \sin \phi d \rho d \phi d \theta
$$

12) If $x=2 u-3 v$ and $y=3 u+4 v$, find the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$.

Hints: The Jacobian is computed using a determinant. Your answer will be a number.

$$
\begin{aligned}
\frac{\partial(x, y)}{\partial(u, v)} & =\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right| \quad\binom{\text { Remember that the transpose of a square matrix }}{\text { has the same determinant as the original. }} \\
& =\left|\begin{array}{cc}
2 & -3 \\
3 & 4
\end{array}\right| \\
& =(2)(4)-(-3)(3) \\
& =8+9 \\
& =17
\end{aligned}
$$

13) Consider the work applied by a force $\mathbf{F}(x, y)=\langle M(x, y), N(x, y)\rangle$ on a particle traveling along a curve C. Three of the following formulas are work formulas that we have covered in class. Circle those three.
a) $\int_{C} M d x+N d y$
b) $\int_{C} \mathbf{F} \bullet \mathbf{r}^{\prime}(t) d t$
c) $\int_{C} \mathbf{F} \bullet \mathbf{N} d s$
d) $\int_{C} \mathbf{F} \bullet \mathbf{T} d s$
e) $\int_{C} \mathbf{F} \bullet d \mathbf{T}$
14) Which two of the following each guarantees that a vector field \mathbf{F} is conservative throughout \mathbf{R}^{3} ? Circle two:
a) If C is any circle in \mathbf{R}^{3} that encloses the origin, $\oint_{C} \mathbf{F} \bullet d \mathbf{r}=0$.
b) curl $\mathbf{F}=\mathbf{0}$ throughout \mathbf{R}^{3}.
c) $\mathbf{F}=\nabla f$ for some scalar function f throughout \mathbf{R}^{3}.
15) Assume that the hypotheses of Green's Theorem (as stated in my 18.4 Notes) are satisfied. In particular, C is a piecewise smooth simple closed curve in the $x y$-plane that is the boundary of R, which consists of C and its interior. D is an open region containing $R . \mathbf{F}(x, y)=\langle M(x, y), N(x, y)\rangle$, where M and N are "nice" in D. Fill in the blank:

According to Green's Theorem,

$$
\oint_{C} \mathbf{F} \bullet d \mathbf{r}, \text { or } \oint_{C} M d x+N d y=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A
$$

