SOLUTIONS TO THE FINAL

MATH 252 – FALL 2006 – KUNIYUKI 60 POINTS TOTAL (15 PROBLEMS; 4 POINTS EACH)

No books allowed. An appropriate sheet of notes and a scientific calculator are allowed.

1) What is the geometric definition of the dot product of two vectors \mathbf{a} and \mathbf{b} in V_n ? Circle one:

a)
$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta$$

b)
$$\mathbf{a} \cdot \mathbf{b} = ||\mathbf{a}|| ||\mathbf{b}|| \sin \theta$$

c)
$$\mathbf{a} \bullet \mathbf{b} = ||\mathbf{a}|| ||\mathbf{b}|| \tan \theta$$

2) Give symmetric equations for the line in *xyz*-space that passes through the point (7, 4, -2) and that has direction vector $3\mathbf{i} - 2\mathbf{j} + \mathbf{k}$.

$$\boxed{\frac{x-7}{3} = \frac{y-4}{-2} = \frac{z+2}{1}}$$

3) The graph of $3x^2 + 4y^2 - z = 0$ in xyz-space is ... (circle one):

- a) A Cone
- b) An Ellipsoid
- c) An Elliptic Paraboloid
- d) A Hyperbolic Paraboloid
- e) A Hyperboloid of One Sheet
- f) A Hyperboloid of Two Sheets

Think: $z = 3x^2 + 4y^2$ or simply $z = x^2 + y^2$ for identification purposes.

4) A plane curve C is parameterized by \mathbf{r} , a smooth vector-valued function of t, from t = a to t = b, where a < b. The curve does not overlap itself. Which of the following will give you the arc length of C? Circle one:

a)
$$\int_a^b \|\mathbf{r}(t)\| dt$$

a)
$$\int_a^b \| \mathbf{r}(t) \| dt$$
 b) $\int_a^b \| \mathbf{r}'(t) \| dt$ c) $\int_a^b \| \mathbf{r}''(t) \| dt$

c)
$$\int_a^b \|\mathbf{r''}(t)\| dt$$

5) True or False: If v is a "nice" everywhere differentiable vector-valued function of t, $D_t [\mathbf{v}(t) \bullet \mathbf{v}(t)] = 2 [\mathbf{v}'(t) \bullet \mathbf{v}(t)]$. Circle one:

False

$$D_{t} [\mathbf{v}(t) \bullet \mathbf{v}(t)] = [\mathbf{v}'(t) \bullet \mathbf{v}(t)] + [\mathbf{v}(t) \bullet \mathbf{v}'(t)]$$
 (by a Product Rule for VVFs)
= $2 [\mathbf{v}'(t) \bullet \mathbf{v}(t)]$

6) Two of the following are expressions for curvature that we have covered in class. Circle those two, and only those two.

a)
$$\left\| \frac{d\mathbf{r}}{ds} \right\|$$

b)
$$\left\| \frac{d\mathbf{T}}{ds} \right\|$$

c)
$$\left\| \frac{d\mathbf{N}}{ds} \right\|$$

d)
$$\frac{\|\mathbf{r}(t) \times \mathbf{r}'(t)\|}{\|\mathbf{r}(t)\|^3}$$

d)
$$\frac{\|\mathbf{r}(t)\times\mathbf{r}'(t)\|}{\|\mathbf{r}(t)\|^3}$$
 e) $\frac{\|\mathbf{r}'(t)\times\mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3}$

7) Let f be a "nice" differentiable function of x and y. Give the limit definition of $f_{v}(x,y)$.

$$f_{y}(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$$

8) Let *S* be the graph of F(x, y, z) = 0, where $\nabla F(x, y, z)$ is continuous. If $\nabla F(2, -1, 3) = \langle 6, 2, 3 \rangle$, write an equation for the tangent plane to *S* at (2, -1, 3).

$$6(x-2)+2(y-(-1))+3(z-3)=0 or 6(x-2)+2(y+1)+3(z-3)=0 or 6x+2y+3z=19$$

- 9) Let f be a "nice" function of x and y with continuous second-order partial derivatives. Let $D = f_{xx} f_{yy} (f_{xy})^2$. The point (-1, -3) is a critical point of f where D = -20 and $f_{xx} = 5$. Which one of the following does f have at (-1, -3)? Circle one:
 - a) A local maximum
 - b) A local minimum
 - c) A saddle point

This is because D < 0 at the critical point.

10) Express dV in cylindrical coordinates.

$$dV = r \, dz \, dr \, d\theta$$

11) Express dV in spherical coordinates.

$$dV = \rho^2 \sin\phi \ d\rho \, d\phi \, d\theta$$

12) If x = 2u - 3v and y = 3u + 4v, find the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$.

Hints: The Jacobian is computed using a determinant. Your answer will be a number.

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$
(Remember that the transpose of a square matrix has the same determinant as the original.
$$= \begin{vmatrix} 2 & -3 \\ 3 & 4 \end{vmatrix}$$

$$= (2)(4) - (-3)(3)$$

$$= 8 + 9$$

$$= \boxed{17}$$

Consider the work applied by a force $\mathbf{F}(x,y) = \langle M(x,y), N(x,y) \rangle$ on a particle traveling along a curve C. Three of the following formulas are work formulas that we have covered in class. Circle those three.

a)
$$\int_C M dx + N dy$$
 b) $\int_C \mathbf{F} \cdot \mathbf{r}'(t) dt$ c) $\int_C \mathbf{F} \cdot \mathbf{N} ds$ d) $\int_C \mathbf{F} \cdot \mathbf{T} ds$ e) $\int_C \mathbf{F} \cdot d\mathbf{T}$

- Which two of the following each guarantees that a vector field \mathbf{F} is conservative throughout \mathbf{R}^3 ? Circle two:
 - a) If C is any circle in \mathbb{R}^3 that encloses the origin, $\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$.
 - b) **curl** $\mathbf{F} = \mathbf{0}$ throughout \mathbf{R}^3 .
 - c) $\mathbf{F} = \nabla f$ for some scalar function f throughout \mathbf{R}^3 .

15) Assume that the hypotheses of Green's Theorem (as stated in my 18.4 Notes) are satisfied. In particular, C is a piecewise smooth simple closed curve in the xy-plane that is the boundary of R, which consists of C and its interior. D is an open region containing R. $\mathbf{F}(x,y) = \langle M(x,y), N(x,y) \rangle$, where M and N are "nice" in D. Fill in the blank:

According to Green's Theorem,

$$\oint_C \mathbf{F} \bullet d\mathbf{r}, \text{ or } \oint_C M \, dx + N \, dy = \left[\iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dA \right]$$