SOLUTIONS TO THE FINAL

MATH 252 – FALL 2008 – KUNIYUKI 60 POINTS TOTAL (15 PROBLEMS; 4 POINTS EACH)

No books allowed. An appropriate sheet of notes and a scientific calculator are allowed.

- 1) If **a** and **b** are vectors in V_2 such that $\mathbf{a} \cdot \mathbf{b} < 0$, which of the following is true? Box in the best answer:
 - a) The angle between **a** and **b** is in $[0^{\circ}, 90^{\circ})$.
 - b) The angle between **a** and **b** is in $(90^{\circ}, 180^{\circ}]$.
 - c) $\mathbf{a} \cdot \mathbf{b}$ tells us nothing about the angle between \mathbf{a} and \mathbf{b} .

$$\cos \theta = \frac{\mathbf{a} \bullet \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|} \text{ and } \mathbf{a} \bullet \mathbf{b} < 0 \implies$$

$$\cos \theta < 0 \implies$$

$$\theta \text{ is in } (90^{\circ}, 180^{\circ}).$$

2) Write an equation for the plane in xyz-space that is parallel to the plane with equation 3x - 2y + 7z = 10 and that contains the point (4, -1, 8).

The given plane and the desired plane both have $\langle 3, -2, 7 \rangle$ as a normal vector.

$$3(x-4)-2(y-(-1))+7(z-8)=0 or 3x-2y+7z-70=0 or 3x-2y+7z=70$$

- 3) Consider the graph of $4x^2 5y^2 6z^2 = 3$ in xyz-space. The trace of the graph in the plane x = 10 is ... (Box in one):
 - a) An Ellipse
 - b) A Hyperbola
 - c) A Parabola

(See next page.)

The trace is given by:

$$4x^{2} - 5y^{2} - 6z^{2} = 3, x = 10 \implies$$

$$4(10)^{2} - 5y^{2} - 6z^{2} = 3, x = 10$$

$$397 = 5y^{2} + 6z^{2}, x = 10$$

This is an ellipse.

The ellipse family of traces makes sense, since planes of the form x = k are perpendicular to the axis of the similar graph of $x^2 - y^2 - z^2 = 1$, which, like the given graph, is a hyperboloid of two sheets with the x-axis as its axis.

- 4) If **r** is a vector-valued position function of *t* that is smooth and twice differentiable for all real *t*, which one of the following will be true for all real *t*? Box in one:
 - a) $\mathbf{r}(t) \perp \mathbf{T}(t)$

We have no reason to believe the Sphere Theorem applies.

b)
$$\mathbf{r}'(t) \perp \mathbf{T}(t)$$

c)
$$\mathbf{r}'(t) \| \mathbf{T}(t)$$

Actually, $\mathbf{r'}$ and \mathbf{T} point in the same direction for all real t, since \mathbf{T} is the normalized version of $\mathbf{r'}$.

- 5) If the curvature at a point on a curve (in the real plane) is 10, what is the radius of curvature at that point?
 - $\boxed{\frac{1}{10}}$, because the radius of curvature at a point *P*, $\rho |_{P} = \frac{1}{\text{curvature } \kappa |_{P}} = \frac{1}{10}$

- 6) Fill in the blank: The level surface of $f(x, y, z) = 4x^2 + 9y^2 z^2$, k = 4 is **B**_. (Pick a letter from below.)
 - A. A Sphere or Ellipsoid
 - B. A Hyperboloid of One Sheet
 - C. A Hyperboloid of Two Sheets
 - D. A Cone
 - E. A Circular or Elliptic Paraboloid
 - F. A Hyperbolic Paraboloid
 - G. A Right Circular or Elliptic Cylinder
 - H. A Plane
 - I. A Line (a "degenerate" surface)
 - J. A Point (a "degenerate" surface)
 - K. NONE (no surface)

We want the graph of the equation $4 = 4x^2 + 9y^2 - z^2$. Think: $1 = x^2 + y^2 - z^2$ for identification purposes.

7) Assume that f is a differentiable function of x, y, and z. Give the limit definition of $f_z(x, y, z)$.

$$f_z(x, y, z) = \lim_{h \to 0} \frac{f(x, y, z + h) - f(x, y, z)}{h}$$

8) Let *S* be the graph of F(x, y, z) = 0, where $\nabla F(x, y, z)$ is continuous. Assuming that $\nabla F(-2, 4, 1) = \langle 8, 1, -3 \rangle$, write parametric equations for the normal line to *S* at (-2, 4, 1).

$$\begin{cases} x = -2 + 8t \\ y = 4 + t \\ z = 1 - 3t \end{cases} (t \in \mathbf{R})$$

- 9) Assume that f is a function of x and y with continuous second-order partial derivatives. Let $D = f_{xx} f_{yy} (f_{xy})^2$. The point (2, -3) is a critical point of f where D = 40 and $f_{xx} = 2$. Which one of the following does f have at (2, -3)? Box in one:
 - a) A local maximum
 - b) A local minimum
 - c) A saddle point

This is because D > 0 and $f_{xx} > 0$ (Think: concave up (\cup)) at the critical point.

10) The graph of $z = r \ (r \ge 0)$ in xyz-space is part of ... (Box in one):

A cone A circular cylinder A plane A sphere See the 17.7 Notes.

11) Express dV in spherical coordinates.

$$dV = \rho^2 \sin\phi \ d\rho \, d\phi \, d\theta$$

12) If x = 4u + 3v and y = 2u - v, find the Jacobian $\frac{\partial(x, y)}{\partial(u, v)}$.

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$
(Remember that the transpose of a square matrix has the same determinant as the original.
$$= \begin{vmatrix} 4 & 3 \\ 2 & -1 \end{vmatrix}$$

$$= (4)(-1)-(3)(2)$$

$$= -4-6$$

$$= \boxed{-10}$$

Consider a vector field \mathbf{F} that is "nice" throughout \mathbf{R}^3 ; here, "nice" means 13) that the partial derivatives exist for the i-, j-, and k-components of F throughout \mathbb{R}^3 . Assume that, at the origin, div $\mathbb{F} > 0$. Which of the following is at the origin? (Optional Hint: Try to find a "nice" F for which div $\mathbf{F} > 0$ throughout \mathbf{R}^3 , and visualize it.) Box in one:

> A sink A source

For example, if $\mathbf{F}(x, y, z) = \langle x, y, z \rangle$, then:

div
$$\mathbf{F} = \frac{\partial}{\partial x}(x) + \frac{\partial}{\partial y}(y) + \frac{\partial}{\partial z}(z)$$

= 1+1+1
= 3 (> 0 throughout \mathbf{R}^3)

Visually: The vectors in the vector field (except the zero vector at the origin) all point away from the origin, so that implies that there is a source at the origin.

- Consider the work applied by a force $\mathbf{F}(x,y) = \langle M(x,y), N(x,y) \rangle$ on a 14) particle traveling along a curve C. Two of the following formulas are work formulas that we have covered in class. Box in those two.
- a) $\int_C \mathbf{F} \cdot \mathbf{r}(t) dt$ b) $\int_C \mathbf{F} \cdot \mathbf{T}'(t) dt$ c) $\int_C \mathbf{F} \cdot \mathbf{T} ds$
- d) $\int_C M dx + N dy$ e) $\int_C \mathbf{F} \cdot \mathbf{N} ds$
- If a vector field \mathbf{F} is continuous in \mathbf{R}^3 , under what conditions will we be 15) guaranteed that the work integral $\int_{C} \mathbf{F} \cdot d\mathbf{r} = 0$? Box in one of a), b), or c): (Assume that a circular path corresponds to exactly one revolution.)
 - \mathbf{F} is conservative in \mathbf{R}^3 , and C is piecewise smooth. a)
 - div $\mathbf{F} = 0$ throughout \mathbf{R}^3 , and C is a circle in \mathbf{R}^3 . b)
 - $\mathbf{F} = \nabla f$ throughout \mathbf{R}^3 , where f(x, y, z) = xyz, and c) C is a circle in \mathbb{R}^3 .

If $\mathbf{F} = \nabla f$ for some scalar function f throughout \mathbf{R}^3 , then \mathbf{F} is conservative in \mathbf{R}^3 . A circle is a simple closed curve. If \mathbf{F} is conservative in \mathbb{R}^3 , then the work integral along any simple closed curve in \mathbb{R}^3 is 0 in value.