Name:

FINAL MATH 254 - SUMMER 2002 - KUNIYUKI

GRADED OUT OF 100 POINTS × 2 = 200 POINTS TOTAL <u>Circle your final answers!</u> <u>Show all work and simplify wherever appropriate, as we have done in class!</u> <u>A scientific calculator and an appropriate sheet of notes are allowed on this exam.</u>

Assume that *n* represents a positive integer.

1) Find
$$A^{10}$$
 if $A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$. (3 points)

2) Find the determinant below. (10 points)

2	3	3	0	1
1	-1	-2	0	4
0	5	0	0	0
3	4	1	3	-2
1	0	2	0	1

3) If A is a 4×4 matrix, and |A| = 10, then find |3A|. (3 points)

4) Let $\mathbf{v}_1 = (0, 3, 6, 0)$, $\mathbf{v}_2 = (0, 2, 4, 6)$, and $\mathbf{v}_3 = (1, -1, -2, 1)$. Express (4, -1, -2, -11) as a linear combination of \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 . The weights in this linear combination must be given as specific real numbers; don't just leave them as " c_i "s. (12 points) 5) Find the angle between the vectors (1, 3, 3) and (2, 1, -4). Round off your answer to the nearest tenth of a degree. (For maximum accuracy, don't round off until the end.) (8 points)

6) $T: \mathbb{R}^4 \to \mathbb{R}^3$ is a linear transformation such that $T(\mathbf{v}) = A\mathbf{v}$, where A is the matrix below. (6 points total; 2 points each)

$$A = \begin{bmatrix} 1 & 3 & -2 & 2 \\ 0 & 0 & 4 & 3 \\ 0 & 0 & 0 & -5 \end{bmatrix}$$

- a) What is the dimension of the kernel of T?
- b) Is *T* a one-to-one transformation? Circle one:

Yes No

c) Is *T* an onto transformation? Circle one:

Yes No

7) A is an $n \times n$ real matrix that has λ as a real eigenvalue. Prove that the (real) eigenspace for λ is a subspace of R^n , as we have done in class. Show all steps! (8 points)

8) Orthogonally diagonalize the real symmetric matrix $A = \begin{bmatrix} 1 & -2 \\ -2 & 4 \end{bmatrix}$

by giving an <u>orthogonal</u> matrix *P* and a diagonal matrix *D* such that $D = P^{-1}AP$ (or, equivalently, $D = P^{T}AP$). <u>Hint</u>: The eigenvalues of *A* are 0 and 5; you don't have to show that. (16 points)

YOU MAY USE THE NEXT PAGE! →

8) (cont.)

9) Rewrite $\frac{1}{3-2i}\begin{bmatrix} 4+i & i\\ -2 & 0 \end{bmatrix}$ as an equivalent expression of the form $c\begin{bmatrix} z_1 & z_2\\ z_3 & z_4 \end{bmatrix}$, where *c* is a real number, and the "*z_i*"s are complex numbers written in standard form. (8 points)

10) Find $\|\mathbf{v}\|$, the Euclidean norm of \mathbf{v} , where $\mathbf{v} = (4 + i, 3)$ is a vector in C^2 . (4 points)

11)	A is an $n \times n$ real matrix. For each statement below, circle "Yes" if it is equivalent to the statement "A is invertible." Otherwise, circle "No". You do <u>not</u> have to justify your answers. (10 points total; 2 points each)				
	a) $\det(A) = 0$.	Yes	No		
	b) <i>A</i> is diagonalizable.	Yes	No		
	c) <i>A</i> can be written as the product of elementary matrices.	Yes	No		
	d) $\operatorname{rank}(A) = n$.	Yes	No		

e) A is similar to I_n , the $n \times n$ identity matrix	x. Yes No
---	-----------

TRUE or FALSE (12 points; 3 points each)

Circle "True" or "False" (as appropriate) for each statement below. You do <u>not</u> have to justify your answers.

Remember that you must circle "False" if the statement is "sometimes true, but sometimes false."

Assume that *m* and *n* represent positive integers and that all matrices are real.

1) If A and B are $n \times n$ matrices, then $(A + B)(A - B) = A^2 - B^2$.

True False

2) If A is an $m \times n$ matrix, then $A^T A$ is symmetric.

True False

3) A set of 7 vectors in R^5 must span R^5 .

True False

4) If *A* is an $m \times n$ matrix, then the set of all (compatible) vectors **b** that make $A\mathbf{x} = \mathbf{b}$ consistent is a subspace of R^m .

True False