\qquad

FINAL
 MATH 254 - SUMMER 2002 - KUNIYUKI

GRADED OUT OF 100 POINTS $\times 2=200$ POINTS TOTAL
Circle your final answers!
Show all work and simplify wherever appropriate, as we have done in class! A scientific calculator and an appropriate sheet of notes are allowed on this exam.

Assume that n represents a positive integer.

1) Find A^{10} if $A=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2\end{array}\right] \cdot$ (3 points)
2) Find the determinant below. (10 points)
$\left|\begin{array}{ccccc}2 & 3 & 3 & 0 & 1 \\ 1 & -1 & -2 & 0 & 4 \\ 0 & 5 & 0 & 0 & 0 \\ 3 & 4 & 1 & 3 & -2 \\ 1 & 0 & 2 & 0 & 1\end{array}\right|$
3) If A is a 4×4 matrix, and $|A|=10$, then find $|3 A|$. (3 points)
4) Let $\mathbf{v}_{1}=(0,3,6,0), \mathbf{v}_{2}=(0,2,4,6)$, and $\mathbf{v}_{3}=(1,-1,-2,1)$. Express $(4,-1,-2,-11)$ as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3}. The weights in this linear combination must be given as specific real numbers; don't just leave them as " c_{i} "s. (12 points)
5) Find the angle between the vectors $(1,3,3)$ and $(2,1,-4)$. Round off your answer to the nearest tenth of a degree. (For maximum accuracy, don't round off until the end.) (8 points)
6) $T: R^{4} \rightarrow R^{3}$ is a linear transformation such that $T(\mathbf{v})=A \mathbf{v}$, where A is the matrix below. (6 points total; 2 points each)

$$
A=\left[\begin{array}{cccc}
1 & 3 & -2 & 2 \\
0 & 0 & 4 & 3 \\
0 & 0 & 0 & -5
\end{array}\right]
$$

a) What is the dimension of the kernel of T ?
b) Is T a one-to-one transformation? Circle one:
Yes No
c) Is T an onto transformation? Circle one:

> Yes No
7) A is an $n \times n$ real matrix that has λ as a real eigenvalue. Prove that the (real) eigenspace for λ is a subspace of R^{n}, as we have done in class. Show all steps! (8 points)
8) Orthogonally diagonalize the real symmetric matrix $A=\left[\begin{array}{cc}1 & -2 \\ -2 & 4\end{array}\right]$ by giving an orthogonal matrix P and a diagonal matrix D such that $D=P^{-1} A P$ (or, equivalently, $D=P^{T} A P$). Hint: The eigenvalues of A are 0 and 5 ; you don't have to show that. (16 points)

YOU MAY USE THE NEXT PAGE! \rightarrow

8) (cont.)
9) Rewrite $\frac{1}{3-2 i}\left[\begin{array}{cc}4+i & i \\ -2 & 0\end{array}\right]$ as an equivalent expression of the form $c\left[\begin{array}{ll}z_{1} & z_{2} \\ z_{3} & z_{4}\end{array}\right]$, where c is a real number, and the " z_{i} "s are complex numbers written in standard form. (8 points)
10) Find $\|\mathbf{v}\|$, the Euclidean norm of \mathbf{v}, where $\mathbf{v}=(4+i, 3)$ is a vector in C^{2}. (4 points)
11) A is an $n \times n$ real matrix. For each statement below, circle "Yes" if it is equivalent to the statement " \boldsymbol{A} is invertible." Otherwise, circle "No". You do not have to justify your answers. (10 points total; 2 points each)
a) $\operatorname{det}(A)=0$.
Yes
No
b) A is diagonalizable.
Yes
No
c) A can be written as the product of elementary matrices.

Yes
No
d) $\operatorname{rank}(A)=n$.

Yes
No
e) A is similar to I_{n}, the $n \times n$ identity matrix. Yes

No

TRUE or FALSE (12 points; 3 points each)

Circle "True" or "False" (as appropriate) for each statement below.
You do not have to justify your answers.
Remember that you must circle "False" if the statement is "sometimes true, but sometimes false."

Assume that m and n represent positive integers and that all matrices are real.

1) If A and B are $n \times n$ matrices, then $(A+B)(A-B)=A^{2}-B^{2}$.

$$
\text { True } \quad \text { False }
$$

2) If A is an $m \times n$ matrix, then $A^{T} A$ is symmetric.

$$
\text { True } \quad \text { False }
$$

3) A set of 7 vectors in R^{5} must span R^{5}.

True False
4) If A is an $m \times n$ matrix, then the set of all (compatible) vectors \mathbf{b} that make $A \mathbf{x}=\mathbf{b}$ consistent is a subspace of R^{m}.

True False

