MATH 254: HOMEWORK

CHAPTERS 1, 2, and 3

- The assignments for Chapters 1,2 , and 3 are due on the day that you take Midterm 1.
- Answers to odd-numbered problems are in the back of the textbook.
- Show work where appropriate, write your name on your homework, and use the Student Solutions Guide wisely.

CHAPTER 1

Section 1.1 (p.11) \#1-9 odd, 27, 29, 59, 71, 72
Section 1.2 (p.24) \#1-31 odd (use matrices), 37-43 odd, 47, 49, 51, 57, 60
\#25: The solutions guide should have put its final matrix in row-echelon form.
\#60: Hint: Use substitution. Two solutions: $(2,-1),(-2,-1)$.
Section 1.3 (p.35) \#1, 3, 19 (On \#19: Just write the system.)

CHAPTER 2

Section 2.1 (p.52) \#1, 3, 9-19 odd, 25, 29, 31, 33, 37-43 odd, 44, 49, 51, 52, 53
\#25: Hint: Let $A=\left[\begin{array}{ll}p & r \\ q & s\end{array}\right]$. We will discuss this issue further in Section 2.3.
\#39: Proofs may vary.
\#52: This is a Markov Chain problem seen in a course on probability.

Section 2.2 (p.64) \#1-13 odd, 17, 18, 19, 21, 23, 27, 28, 29, 31, 32, 33, 35, 37, 39, 51, 53, 59
\#27, 28: You don't need to give examples.
\#32d: Assume that the matrices are the same size.
\#33: These issues come up again in Chapter 4!!
\#35, 37: Hint: See 2.1 \#31.

Section 2.3 (p.77) \#1-13 odd, 19, 23-29 odd, 34-43 all, 45-49 all

Section 2.4 (p.88) \#1-20 all, 29-33 all, 35, 36, 41, 42, 43-57 odd, 58
\#42c: Answer: $(2,1,1,1)$

Section 2.5 (p.105) \#29b (See Example 10 on p.102.)

CHAPTER 3

Section 3.1 (p.119) \#1-11 odd, 17, 18, 19-31 odd, 37-43 odd, 44, 45,
51 (then, look at 52), 53
\#19-31 odd, 51: You may use Sarrus's Rule to compute determinants of 3×3 matrices, if you wish. See Example 5 on p.117.
\#45: A preview of Chapter 7 (eigenvalues)!!

Section 3.2 (p.127) \#1-17 odd, 29, 30, 31, 33, 35, 39, 40, 42
\#42: Remember that the i th row expansion of $\operatorname{det}(A)$ is

$$
\operatorname{det}(A)=\sum_{j=1}^{n} a_{i j} C_{i j}=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\ldots+a_{i n} C_{i n}
$$

where $C_{i j}$ is the cofactor of $a_{i j}$.

Section 3.3 (p.135) \#1-13 odd, 19-31 odd, 35-39 all, 41-51 all, 53, 55, 57, 58, 59
\#11, 13: Use shortcuts; you don't have to directly compute any determinants besides $\operatorname{det}(A)$ when you find the other determinants.
\#36: Answer: 24.
\#41: Also, explain why.
\#43: You don't have to prove (ii) rigorously; at least understand why it is true. We did the proof in class.
\#44:
(ii) We assume that $\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right)$ for all matrices of order $n-1$, i.e., size $(n-1) \times(n-1)$. For more on mathematical induction, see p.A2 in Appendix A.
(iii) Let $D_{i j}$ be the $i j$-cofactor of A^{T}.
\#47, 48: Assume that matrix and vector sizes are compatible.

Section 3.4 (p.150) \#31, 33, 39, 43

Look at \#50: Hint: "Draw perpendiculars" to verify the system.
Look at pp.146-150 for some neat applications of determinants in geometry.
You will not be tested on this.

