MIDTERM 2 -SOLUTIONS

MATH 254 - SUMMER 2002 - KUNIYUKI
 CHAPTERS 4, 5

GRADED OUT OF 75 POINTS $\times \mathbf{2}=\mathbf{1 5 0}$ POINTS TOTAL
Assume that the "standard" operations for vector addition and scalar multiplication are being used in all relevant problems.

1) For each set below, circle "Yes" if it is a vector space, or circle "No" if it is not.

- Whenever you answer "Yes", you do not have to justify your answer.
- Whenever you answer "No", give a counterexample.
(10 points total)
a) The set $\{(x, y) \mid x$ is an integer and y is a real number $\}$

Yes No
For example, $(1,0)$ is in the set, but $\pi(1,0)=(\pi, 0)$ is not, so the set is not closed under scalar multiplication.
b) The set of all fourth-degree polynomials in x

Yes No
For example, 0 is not in the set.
c) $\operatorname{Span}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}\right)$, where $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} are vectors in R^{6}

Yes No
The span of a set of vectors in a vector space must be a subspace of the vector space.
2) Let W be the set of all 3×3 real diagonal matrices. Prove that W is a subspace of $M_{3,3}$. You may assume that $M_{3,3}$ is, itself, a vector space without having to prove that. (Completeness and quality are criteria for grading your proof.) (10 points)
W is clearly a nonempty subset of $M_{3,3}$.
Let \mathbf{v} and \mathbf{w} be any two members of W.

$$
\begin{aligned}
& \mathbf{v}=\left[\begin{array}{ccc}
v_{1} & 0 & 0 \\
0 & v_{2} & 0 \\
0 & 0 & v_{3}
\end{array}\right] \text {, where the diagonal entries are real numbers. } \\
& \mathbf{w}=\left[\begin{array}{ccc}
w_{1} & 0 & 0 \\
0 & w_{2} & 0 \\
0 & 0 & w_{3}
\end{array}\right], \text { where the diagonal entries are real numbers. }
\end{aligned}
$$

Prove closure of W under vector addition:

$$
\mathbf{v}+\mathbf{w}=\left[\begin{array}{ccc}
v_{1}+w_{1} & 0 & 0 \\
0 & v_{2}+w_{2} & 0 \\
0 & 0 & v_{3}+w_{3}
\end{array}\right]
$$

Note that the diagonal entries are real numbers.

$$
\mathbf{v}+\mathbf{w} \text { is in } W .
$$

Prove closure of W under scalar multiplication:

Let c be any real scalar.

$$
c \mathbf{v}=\left[\begin{array}{ccc}
c v_{1} & 0 & 0 \\
0 & c v_{2} & 0 \\
0 & 0 & c v_{3}
\end{array}\right]
$$

Note that the diagonal entries are real numbers.
$c \mathbf{v}$ is in W.
Note: You could prove both types of closure by showing that $c \mathbf{v}+\mathbf{w}$ is in W.
QED
3) For each of the following sets of vectors, circle "Linearly independent" or "Linearly dependent" as appropriate. You do not have to justify your answers. (12 points; 3 points each)
a) $\{(1,2,7),(3,6,19)\}$

Linearly independent Linearly dependent

We have a set of two vectors, neither of which is a scalar multiple of the other.
b) $\{(1,7,8,3),(0,0,0,0),(4,-2,3,10)\}$

Linearly independent Linearly dependent

Any set with the zero vector must be linearly dependent.
c) $\left\{1,1+2 x, 1+2 x+3 x^{2}\right\} \quad$ (Treat these vectors as vectors in P_{2}.)

Linearly independent Linearly dependent

The naturally corresponding vectors in R^{3} are the column vectors in the matrix below:

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 2 \\
0 & 0 & 3
\end{array}\right]
$$

Notice that the matrix is in row-echelon shape. Each column has a pivot position, so the original set of vectors is linearly independent.
d) The set of four vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, 2 \mathbf{v}_{1}+\mathbf{v}_{2}\right\}$, where $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} are vectors in R^{7}.

Linearly independent Linearly dependent
There is a dependency relation among the four vectors. In particular, if we consider $\mathbf{v}_{4}=2 \mathbf{v}_{1}+\mathbf{v}_{2}$, we have that $-2 \mathbf{v}_{1}-\mathbf{v}_{2}+\mathbf{v}_{4}=0$.
4) Does the set of vectors $\{(1,0,4),(0,3,0),(3,7,12),(4,1,16)\}$ span R^{3}, or not? Circle "Spans R^{3} " or "Does not span R^{3} " as appropriate, and justify your answer. Show all work! (6 points)
Spans R^{3}
Does not span R^{3}

Stack the given vectors as column vectors in a matrix:

$$
\left[\begin{array}{cccc}
1 & 0 & 3 & 4 \\
0 & 3 & 7 & 1 \\
4 & 0 & 12 & 16
\end{array}\right]
$$

Now, turn the boldfaced "4" into a "0" by adding (-4) times Row 1 to Row 3.

Old R_{3}	4	0	12	16
$(-4) \cdot R_{1}$	-4	0	-12	-16
New R_{3}	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$

New matrix:

$$
\left[\begin{array}{llll}
\mathbf{1} & 0 & 3 & 4 \\
0 & \mathbf{3} & 7 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The pivot positions are boldfaced. Not every row has a pivot position, so the original set of vectors fails to span R^{3}.
5) Let V be the vector space of all 2×2 real symmetric matrices. What is the dimension of V ? You do not have to justify your answer. (3 points)

3, because that is the number of vectors in the following basis for V :

$$
\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \cdot\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \cdot\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

It helps to recognize that V can be represented in the following way:

$$
V=\left\{\left.\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right] \right\rvert\, a, b, c \text { are real numbers }\right\}
$$

6) Consider the matrix

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 0 & 2 & 5 \\
-2 & -5 & 1 & -1 & -8 \\
0 & -3 & 3 & 4 & 1 \\
3 & 6 & 0 & -7 & 2
\end{array}\right]
$$

By applying elementary row operations (EROs), A can be reduced to the following reduced row-echelon (RRE) form matrix:

$$
B=\left[\begin{array}{ccccc}
1 & 0 & 2 & 0 & 1 \\
0 & 1 & -1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(12 points total)
a) What is the rank of A ? (2 points)

3, because that is the number of pivot positions in B.
b) Write a basis for $\operatorname{Row}(A)$, the row space of A. (4 points)

We grab the nonzero (pivot) rows from B :
$\{(1,0,2,0,1),(0,1,-1,0,1),(0,0,0,1,1)\}$
c) Write a basis for $\operatorname{Col}(A)$, the column space of A. (4 points)

We grab the columns of A that correspond to the pivot columns of B. In other words, we take columns 1,2 , and 4 of A :

$$
\left\{\left[\begin{array}{c}
1 \\
-2 \\
0 \\
3
\end{array}\right] \cdot\left[\begin{array}{c}
2 \\
-5 \\
-3 \\
6
\end{array}\right] \cdot\left[\begin{array}{c}
2 \\
-1 \\
4 \\
-7
\end{array}\right]\right\}
$$

d) What is the nullity of A? (2 points)

2, because that is the number of nonpivot columns in B.
Also, $\operatorname{rank}(A)+\operatorname{nullity}(A)=n$, the total number of columns in A.

$$
\begin{aligned}
3+\operatorname{nullity}(A) & =5 \\
\operatorname{nullity}(A) & =2
\end{aligned}
$$

7) Let \mathbf{v} and \mathbf{w} be two vectors in R^{4} such that \mathbf{v} and \mathbf{w} are orthogonal, $\|\mathbf{v}\|=10$, and $\|\mathbf{w}\|=6$. Find $(\mathbf{v}+2 \mathbf{w}) \bullet(\mathbf{v}-\mathbf{w})$. Your final answer will be a real number. (6 points)

Since \mathbf{v} and \mathbf{w} are orthogonal, $\mathbf{v} \bullet \mathbf{w}=0$, and $\mathbf{w} \bullet \mathbf{v}=0$.

$$
\begin{aligned}
(\mathbf{v}+2 \mathbf{w}) \bullet(\mathbf{v}-\mathbf{w}) & =\mathbf{v} \bullet \mathbf{v}-\mathbf{v} \bullet \mathbf{w}+2 \mathbf{w} \bullet \mathbf{v}-2 \mathbf{w} \bullet \mathbf{w} \\
& =\|\mathbf{v}\|^{2}-0+2(0)-2\|\mathbf{w}\|^{2} \\
& =(10)^{2}-2(6)^{2} \\
& =100-72 \\
& =28
\end{aligned}
$$

8) The set of vectors below is a basis for a two-dimensional subspace of R^{4}. Use the Gram-Schmidt orthonormalization process to transform this basis

$$
\left\{\left[\begin{array}{l}
1 \\
3 \\
2 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
10 \\
8 \\
0
\end{array}\right]\right\}
$$

into an orthonormal basis for the same subspace.
Hint: The orthogonal projection of a vector \mathbf{v} onto a vector \mathbf{w} is given by

$$
\operatorname{proj}_{\mathbf{w}} \mathbf{v}=\left(\frac{\mathbf{v} \bullet \mathbf{w}}{\mathbf{w} \bullet \mathbf{w}}\right) \mathbf{w} .
$$

(16 points)

Label the original set of vectors \mathbf{v}_{1} and \mathbf{v}_{2}, respectively.
We first want a set of orthogonal vectors $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}\right\}$.

$$
\text { Let } \mathbf{w}_{1}=\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
3 \\
2 \\
1
\end{array}\right]
$$

Now, let

$$
\begin{aligned}
\mathbf{w}_{2} & =\mathbf{v}_{2}-\operatorname{proj}_{\mathbf{w}_{1}} \mathbf{v}_{2} \\
& =\mathbf{v}_{2}-\left(\frac{\mathbf{v}_{2} \bullet \mathbf{w}_{1}}{\mathbf{w}_{1} \bullet \mathbf{w}_{1}}\right) \mathbf{w}_{1} \\
& =\left[\begin{array}{c}
-1 \\
10 \\
8 \\
0
\end{array}\right]-\left(\frac{-1+30+16+0}{1+9+4+1}\right)\left[\begin{array}{l}
1 \\
3 \\
2 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
-1 \\
10 \\
8 \\
0
\end{array}\right]-\left(\frac{45}{15}\right)\left[\begin{array}{l}
1 \\
3 \\
2 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
-1 \\
10 \\
8 \\
0
\end{array}\right]-3\left[\begin{array}{l}
1 \\
3 \\
2 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
-4 \\
1 \\
2 \\
-3
\end{array}\right]
\end{aligned}
$$

Finally, we want a set of orthonormal vectors $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$. We need to normalize our vectors.

$$
\begin{aligned}
& \mathbf{u}_{1}=\frac{\mathbf{w}_{1}}{\left\|\mathbf{w}_{1}\right\|}=\frac{1}{\sqrt{(1)^{2}+(3)^{2}+(2)^{2}+(1)^{2}}}\left[\begin{array}{l}
1 \\
3 \\
2 \\
1
\end{array}\right]=\frac{1}{\sqrt{15}}\left[\begin{array}{l}
1 \\
3 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 / \sqrt{15} \\
3 / \sqrt{15} \\
2 / \sqrt{15} \\
1 / \sqrt{15}
\end{array}\right] \\
& \mathbf{u}_{2}=\frac{\mathbf{w}_{2}}{\left\|\mathbf{w}_{2}\right\|}=\frac{1}{\sqrt{(-4)^{2}+(1)^{2}+(2)^{2}+(-3)^{2}}}\left[\begin{array}{c}
-4 \\
1 \\
2 \\
-3
\end{array}\right]=\frac{1}{\sqrt{30}}\left[\begin{array}{c}
-4 \\
1 \\
2 \\
-3
\end{array}\right]=\left[\begin{array}{c}
-4 / \sqrt{30} \\
1 / \sqrt{30} \\
2 / \sqrt{30} \\
-3 / \sqrt{30}
\end{array}\right]
\end{aligned}
$$

Our desired orthonormal basis is:

$$
\left\{\left[\begin{array}{l}
1 / \sqrt{15} \\
3 / \sqrt{15} \\
2 / \sqrt{15} \\
1 / \sqrt{15}
\end{array}\right],\left[\begin{array}{c}
-4 / \sqrt{30} \\
1 / \sqrt{30} \\
2 / \sqrt{30} \\
-3 / \sqrt{30}
\end{array}\right]\right\}
$$

