MIDTERM 2 - SOLUTIONS

MATH 254 - SUMMER 2002 - KUNIYUKI CHAPTERS 4, 5 GRADED OUT OF 75 POINTS \times 2 = 150 POINTS TOTAL

Assume that the "standard" operations for vector addition and scalar multiplication are being used in all relevant problems.

The span of a set of vectors in a vector space must be a subspace of the vector space.

2) Let W be the set of all 3×3 real diagonal matrices. Prove that W is a subspace of $M_{3,3}$. You may assume that $M_{3,3}$ is, itself, a vector space without having to prove that. (Completeness and quality are criteria for grading your proof.) (10 points)

W is clearly a nonempty subset of $M_{3,3}$.

Let \mathbf{v} and \mathbf{w} be any two members of W.

$$\mathbf{v} = \begin{bmatrix} v_1 & 0 & 0 \\ 0 & v_2 & 0 \\ 0 & 0 & v_3 \end{bmatrix}, \text{ where the diagonal entries are real numbers.}$$

$$\mathbf{w} = \begin{bmatrix} w_1 & 0 & 0 \\ 0 & w_2 & 0 \\ 0 & 0 & w_3 \end{bmatrix}$$
, where the diagonal entries are real numbers.

Prove closure of W under vector addition:

$$\mathbf{v} + \mathbf{w} = \begin{bmatrix} v_1 + w_1 & 0 & 0 \\ 0 & v_2 + w_2 & 0 \\ 0 & 0 & v_3 + w_3 \end{bmatrix}.$$

Note that the diagonal entries are real numbers.

$$\mathbf{v} + \mathbf{w}$$
 is in W .

Prove closure of W under scalar multiplication:

Let *c* be any real scalar.

$$c \mathbf{v} = \begin{bmatrix} cv_1 & 0 & 0 \\ 0 & cv_2 & 0 \\ 0 & 0 & cv_3 \end{bmatrix}.$$

Note that the diagonal entries are real numbers.

$$c$$
 v is in W .

Note: You could prove both types of closure by showing that $c \mathbf{v} + \mathbf{w}$ is in W.

QED

3) For each of the following sets of vectors, circle "Linearly independent" or "Linearly dependent" as appropriate. You do <u>not</u> have to justify your answers. (12 points; 3 points each)

Linearly independent Linearly dependent

We have a set of two vectors, neither of which is a scalar multiple of the other.

b)
$$\{(1, 7, 8, 3), (0, 0, 0, 0), (4, -2, 3, 10)\}$$

Linearly independent Linearly dependent

Any set with the zero vector must be linearly dependent.

c)
$$\{1, 1+2x, 1+2x+3x^2\}$$
 (Treat these vectors as vectors in P_2 .)

Linearly independent Linearly dependent

The naturally corresponding vectors in \mathbb{R}^3 are the column vectors in the matrix below:

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}$$

Notice that the matrix is in row-echelon shape. Each column has a pivot position, so the original set of vectors is linearly independent.

d) The set of four vectors
$$\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, 2\mathbf{v}_1 + \mathbf{v}_2\}$$
, where $\mathbf{v}_1, \mathbf{v}_2$, and \mathbf{v}_3 are vectors in R^7 .

Linearly independent Linearly dependent

There is a dependency relation among the four vectors. In particular, if we consider $\mathbf{v}_4 = 2\mathbf{v}_1 + \mathbf{v}_2$, we have that $-2\mathbf{v}_1 - \mathbf{v}_2 + \mathbf{v}_4 = 0$.

4) Does the set of vectors $\{(1,0,4), (0,3,0), (3,7,12), (4,1,16)\}$ span \mathbb{R}^3 , or not? Circle "Spans \mathbb{R}^3 " or "Does not span \mathbb{R}^3 " as appropriate, and justify your answer. Show all work! (6 points)

Spans
$$R^3$$

Does not span R^3

Stack the given vectors as column vectors in a matrix:

$$\begin{bmatrix} 1 & 0 & 3 & 4 \\ 0 & 3 & 7 & 1 \\ 4 & 0 & 12 & 16 \end{bmatrix}$$

Now, turn the boldfaced "4" into a "0" by adding (-4) times Row 1 to Row 3.

Old R_3	4	0	12	16
$(-4) \cdot R_1$	-4	0	-12	-16
New R_3	0	0	0	0

New matrix:

$$\begin{bmatrix} \mathbf{1} & 0 & 3 & 4 \\ 0 & \mathbf{3} & 7 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The pivot positions are boldfaced. Not every row has a pivot position, so the original set of vectors fails to span R^3 .

- 5) Let V be the vector space of all 2×2 real symmetric matrices. What is the dimension of V? You do <u>not</u> have to justify your answer. (3 points)
 - 3, because that is the number of vectors in the following basis for V:

$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

It helps to recognize that V can be represented in the following way:

$$V = \left\{ \begin{bmatrix} a & b \\ b & c \end{bmatrix} \middle| a, b, c \text{ are real numbers} \right\}$$

6) Consider the matrix

$$A = \begin{bmatrix} 1 & 2 & 0 & 2 & 5 \\ -2 & -5 & 1 & -1 & -8 \\ 0 & -3 & 3 & 4 & 1 \\ 3 & 6 & 0 & -7 & 2 \end{bmatrix}$$

By applying elementary row operations (EROs), A can be reduced to the following reduced row-echelon (RRE) form matrix:

$$B = \begin{bmatrix} 1 & 0 & 2 & 0 & 1 \\ 0 & 1 & -1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(12 points total)

- a) What is the rank of A? (2 points)
 - 3, because that is the number of pivot positions in B.
- b) Write a basis for Row(A), the row space of A. (4 points)

We grab the nonzero (pivot) rows from *B*:
$$\{(1,0,2,0,1), (0,1,-1,0,1), (0,0,0,1,1)\}$$

c) Write a basis for Col(A), the column space of A. (4 points)

We grab the columns of A that correspond to the pivot columns of B. In other words, we take columns 1, 2, and 4 of A:

$$\left\{ \begin{bmatrix} 1 \\ -2 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ -5 \\ -3 \\ 6 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 4 \\ -7 \end{bmatrix} \right\}$$

d) What is the nullity of A? (2 points)

2, because that is the number of nonpivot columns in B. Also, rank(A) + nullity(A) = n, the total number of columns in A.

$$3 + \text{nullity}(A) = 5$$

 $\text{nullity}(A) = 2$

7) Let \mathbf{v} and \mathbf{w} be two vectors in \mathbb{R}^4 such that \mathbf{v} and \mathbf{w} are orthogonal, $\|\mathbf{v}\| = 10$, and $\|\mathbf{w}\| = 6$. Find $(\mathbf{v} + 2\mathbf{w}) \bullet (\mathbf{v} - \mathbf{w})$. Your final answer will be a real number. (6 points)

Since v and w are orthogonal, $\mathbf{v} \cdot \mathbf{w} = 0$, and $\mathbf{w} \cdot \mathbf{v} = 0$.

$$(\mathbf{v} + 2\mathbf{w}) \bullet (\mathbf{v} - \mathbf{w}) = \mathbf{v} \bullet \mathbf{v} - \mathbf{v} \bullet \mathbf{w} + 2\mathbf{w} \bullet \mathbf{v} - 2\mathbf{w} \bullet \mathbf{w}$$

$$= \| \mathbf{v} \|^2 - 0 + 2(0) - 2 \| \mathbf{w} \|^2$$

$$= (10)^2 - 2(6)^2$$

$$= 100 - 72$$

$$= 28$$

8) The set of vectors below is a basis for a two-dimensional subspace of \mathbb{R}^4 . Use the Gram-Schmidt orthonormalization process to transform this basis

$$\left\{ \begin{bmatrix} 1\\3\\2\\1 \end{bmatrix}, \begin{bmatrix} -1\\10\\8\\0 \end{bmatrix} \right\}$$

into an orthonormal basis for the same subspace.

Hint: The orthogonal projection of a vector \mathbf{v} onto a vector \mathbf{w} is given by $\operatorname{proj}_{\mathbf{w}} \mathbf{v} = \left(\frac{\mathbf{v} \cdot \mathbf{w}}{\mathbf{w} \cdot \mathbf{w}}\right) \mathbf{w}$.

(16 points)

Label the original set of vectors \mathbf{v}_1 and \mathbf{v}_2 , respectively.

We first want a set of orthogonal vectors $\{\mathbf{w}_1, \mathbf{w}_2\}$.

Let
$$\mathbf{w}_1 = \mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \\ 2 \\ 1 \end{bmatrix}$$

Now, let

$$\mathbf{w}_{2} = \mathbf{v}_{2} - \operatorname{proj}_{\mathbf{w}_{1}} \mathbf{v}_{2}$$

$$= \mathbf{v}_{2} - \left(\frac{\mathbf{v}_{2} \cdot \mathbf{w}_{1}}{\mathbf{w}_{1} \cdot \mathbf{w}_{1}}\right) \mathbf{w}_{1}$$

$$= \begin{bmatrix} -1 \\ 10 \\ 8 \\ 0 \end{bmatrix} - \left(\frac{-1 + 30 + 16 + 0}{1 + 9 + 4 + 1}\right) \begin{bmatrix} 1 \\ 3 \\ 2 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} -1 \\ 10 \\ 8 \\ 0 \end{bmatrix} - \left(\frac{45}{15}\right) \begin{bmatrix} 1 \\ 3 \\ 2 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} -1 \\ 10 \\ 8 \\ 0 \end{bmatrix} - 3 \begin{bmatrix} 1 \\ 3 \\ 2 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} -4 \\ 1 \\ 2 \\ -3 \end{bmatrix}$$

Finally, we want a set of orthonormal vectors $\{\mathbf{u}_1, \mathbf{u}_2\}$. We need to normalize our vectors.

$$\mathbf{u}_{1} = \frac{\mathbf{w}_{1}}{\| \mathbf{w}_{1} \|} = \frac{1}{\sqrt{(1)^{2} + (3)^{2} + (2)^{2} + (1)^{2}}} \begin{bmatrix} 1\\3\\2\\1 \end{bmatrix} = \frac{1}{\sqrt{15}} \begin{bmatrix} 1\\3\\2\\1 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{15}\\3/\sqrt{15}\\2/\sqrt{15}\\1/\sqrt{15} \end{bmatrix}$$

$$\mathbf{u}_{2} = \frac{\mathbf{w}_{2}}{\|\mathbf{w}_{2}\|} = \frac{1}{\sqrt{(-4)^{2} + (1)^{2} + (2)^{2} + (-3)^{2}}} \begin{bmatrix} -4\\1\\2\\-3 \end{bmatrix} = \frac{1}{\sqrt{30}} \begin{bmatrix} -4\\1\\2\\-3 \end{bmatrix} = \begin{bmatrix} -4/\sqrt{30}\\1/\sqrt{30}\\2/\sqrt{30}\\-3/\sqrt{30} \end{bmatrix}$$

Our desired orthonormal basis is:

$$\left\{ \begin{bmatrix} 1/\sqrt{15} \\ 3/\sqrt{15} \\ 2/\sqrt{15} \\ 1/\sqrt{15} \end{bmatrix}, \begin{bmatrix} -4/\sqrt{30} \\ 1/\sqrt{30} \\ 2/\sqrt{30} \\ -3/\sqrt{30} \end{bmatrix} \right\}$$