Name:

MIDTERM 3

MATH 254 - SUMMER 2002 - KUNIYUKI CHAPTERS 6, 7

GRADED OUT OF 75 POINTS $\times \mathbf{2}=\mathbf{1 5 0}$ POINTS TOTAL Circle vour final answers!
Show all work and simplify wherever appropriate, as we have done in class!
A scientific calculator is allowed on this exam.

1) The linear transformation $T: R^{2} \rightarrow R^{3}$ is such that $T(1,1)=(-3,4,1)$ and $T(0,1)=(1,5,3)$. Find $T(4,5)$.
Hint: Remember the definition of a linear transformation. (5 points)
2) The linear transformation $T: R^{2} \rightarrow R^{2}$ is such that $T\left(v_{1}, v_{2}\right)=\left(2 v_{1}-v_{2}, 2 v_{1}+3 v_{2}\right)$. Find the preimage of $(17,5)$. (7 points)
3) The linear transformation $T: R^{5} \rightarrow R^{7}$ is such that $\operatorname{dim}(\operatorname{Ker}(T))=3$.
(11 points total)
a) What is the domain of T ?
b) What is nullity (T) ?
c) What is $\operatorname{rank}(T)$?
d) True or False: Range (T) is a subspace of R^{7}. Circle one:

True
False
e) True or False: $\operatorname{Ker}(T)$ is a subspace of R^{7}. Circle one:

True
False
4) $T: R^{2} \rightarrow R^{2}$ is a linear transformation such that, relative to the standard basis of $R^{2}, T(x, y)=T(3 x-y, x+4 y)$. Another basis for R^{2} is given by: $B^{\prime}=\{(1,3),(2,0)\} .(13$ points total $)$
a) Find the standard matrix for T. (3 points)
b) Find the matrix for T relative to the basis B^{\prime}. (10 points)
5) Find the eigenvalues of the following matrix. Show all work!

$$
A=\left[\begin{array}{ll}
2 & 3 \\
2 & 7
\end{array}\right]
$$

(6 points)
6) Diagonalize the matrix $A=\left[\begin{array}{cc}1 & 0 \\ 6 & -1\end{array}\right]$ by giving matrices P and D such that $D=P^{-1} A P$, where D is diagonal. You do not have to give P^{-1}. (16 points)
7) Prove that if A is an orthogonal matrix, then $|A|$ is either 1 or -1 . Show all steps! (5 points)

TRUE or FALSE (12 points; 3 points each)

Circle "True" or "False" (as appropriate) for each statement below. You do not have to justify your answers.

Assume that A is a real matrix in the statements below.

1) If the linear transformation $T: V \rightarrow W$ is an isomorphism, then $\operatorname{Ker}(T)$ must only consist of a "zero" vector.

True False
2) If A is a symmetric matrix, then A must be similar to a diagonal matrix.

True False
3) If A is a square matrix that has 4 as an eigenvalue with algebraic multiplicity 3 , then the eigenspace for $\lambda=4$ must be three-dimensional.

$$
\text { True } \quad \text { False }
$$

4) If A is a square matrix whose columns form an orthogonal set of nonzero vectors, then A must be an orthogonal matrix.
