MIDTERM 3 - SOLUTIONS

MATH 254 - SUMMER 2002 - KUNIYUKI
 CHAPTERS 6, 7

GRADED OUT OF 75 POINTS $\times 2=150$ POINTS TOTAL

1) The linear transformation $T: R^{2} \rightarrow R^{3}$ is such that $T(1,1)=(-3,4,1)$ and $T(0,1)=(1,5,3)$. Find $T(4,5)$.
Hint: Remember the definition of a linear transformation.
(5 points)
Express $(4,5)$ as a linear combination of the given basis vectors for R^{2}, $(1,1)$ and $(0,1)$. Observe that $(4,5)=(4,4)+(0,1)=4(1,1)+(0,1)$.

$$
\begin{aligned}
T(4,5) & =T(4(1,1)+(0,1)) \\
& =4 T(1,1)+T(0,1) \\
& =4(-3,4,1)+(1,5,3) \\
& =(-12,16,4)+(1,5,3) \\
& =(-11,21,7)
\end{aligned}
$$

2) The linear transformation $T: R^{2} \rightarrow R^{2}$ is such that $T\left(v_{1}, v_{2}\right)=\left(2 v_{1}-v_{2}, 2 v_{1}+3 v_{2}\right)$. Find the preimage of $(17,5)$. (7 points)

We want to solve the system (maybe by using Gauss-Jordan elimination)

$$
\begin{aligned}
& \left\{\begin{array}{l}
2 v_{1}-v_{2}=17 \\
2 v_{1}+3 v_{2}=5
\end{array}\right. \\
& {\left[\begin{array}{cc|c}
2 & -1 & 17 \\
2 & 3 & 5
\end{array}\right]}
\end{aligned}
$$

Subtract Row 1 from Row 2. $R_{2}+(-1) R_{1} \rightarrow R_{2}$.

$$
\left[\begin{array}{cc|c}
2 & -1 & 17 \\
0 & 4 & -12
\end{array}\right]
$$

Divide Row 2 through by 4 .

$$
\left[\begin{array}{cc|c}
2 & -1 & 17 \\
0 & 1 & -3
\end{array}\right]
$$

Add Row 2 to Row 1. $R_{1}+R_{2} \rightarrow R_{1}$.

$$
\left[\begin{array}{ll|l}
2 & 0 & 14 \\
0 & 1 & -3
\end{array}\right]
$$

Divide Row 1 through by 2.

$$
\left[\begin{array}{cc|c}
1 & 0 & 7 \\
0 & 1 & -3
\end{array}\right]
$$

The preimage is $\{(7,-3)\}$.
3) The linear transformation $T: R^{5} \rightarrow R^{7}$ is such that $\operatorname{dim}(\operatorname{Ker}(T))=3$.
(11 points total)
a) What is the domain of T ? (2 points)
R^{5}
b) What is nullity (T) ? (2 points)

3, since $\operatorname{nullity}(T)=\operatorname{dim}(\operatorname{Ker}(T))$.
c) What is $\operatorname{rank}(T)$? (3 points)

2 , $\operatorname{since} \operatorname{rank}(T)+\operatorname{nullity}(T)=\operatorname{dimension}$ of domain $=5$.
d) True or False: Range (T) is a subspace of R^{7}. Circle one: (2 points)

True
False

Note that $\operatorname{Range}(T)=\operatorname{Col}(A)$, where A is a 7×5 matrix.
e) True or False: $\operatorname{Ker}(T)$ is a subspace of R^{7}. Circle one: (2 points)

True
False
$\operatorname{Ker}(T)$ is a subspace of the domain, R^{5}.
4) $T: R^{2} \rightarrow R^{2}$ is a linear transformation such that, relative to the standard basis of $R^{2}, T(x, y)=T(3 x-y, x+4 y)$. Another basis for R^{2} is given by: $B^{\prime}=\{(1,3),(2,0)\} .(13$ points total)
a) Find the standard matrix for T. (3 points)

List the components of $T(x, y)$ in rows and line up like terms:

$$
\begin{array}{r}
3 x-y \\
x+4 y
\end{array}
$$

The coefficients then make up A, which will be 2×2, since T maps R^{2} into R^{2}.

$$
A=\left[\begin{array}{cc}
3 & -1 \\
1 & 4
\end{array}\right]
$$

b) Find the matrix for T relative to the basis B^{\prime}. (10 points)

The transition matrix from B^{\prime} to B is:

$$
P=\left[\begin{array}{ll}
1 & 2 \\
3 & 0
\end{array}\right] \quad \text { (The columns are the } B^{\prime} \text { vectors.) }
$$

The transition matrix from B to B^{\prime} is:

$$
\begin{aligned}
P^{-1} & =\left[\begin{array}{ll}
1 & 2 \\
3 & 0
\end{array}\right]^{-1} \\
& =\frac{1}{\operatorname{det}(P)}\left[\begin{array}{cc}
0 & -2 \\
-3 & 1
\end{array}\right] \\
& =\frac{1}{-6}\left[\begin{array}{cc}
0 & -2 \\
-3 & 1
\end{array}\right] \\
& =-\frac{1}{6}\left[\begin{array}{cc}
0 & -2 \\
-3 & 1
\end{array}\right]
\end{aligned}
$$

So, the matrix for T relative to B^{\prime} is:

$$
\begin{aligned}
A^{\prime} & =P^{-1} A P \\
& =-\frac{1}{6} \underbrace{\left[\begin{array}{cc}
0 & -2 \\
-3 & 1
\end{array}\right]\left[\begin{array}{cc}
3 & -1 \\
1 & 4
\end{array}\right]}_{\left[\begin{array}{cc}
-2 & -8 \\
-8 & 7
\end{array}\right]}\left[\begin{array}{cc}
1 & 2 \\
3 & 0
\end{array}\right] \\
& =-\frac{1}{6}\left[\begin{array}{cc}
-26 & -4 \\
13 & -16
\end{array}\right] \text { or }\left[\begin{array}{cc}
\frac{13}{3} & \frac{2}{3} \\
-\frac{13}{6} & \frac{8}{3}
\end{array}\right]
\end{aligned}
$$

5) Find the eigenvalues of the following matrix. Show all work!

$$
A=\left[\begin{array}{ll}
2 & 3 \\
2 & 7
\end{array}\right]
$$

(6 points)
Solve $|\lambda I-A|=0$.

$$
\begin{aligned}
\left|\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]-\left[\begin{array}{ll}
2 & 3 \\
2 & 7
\end{array}\right]\right| & =0 \\
\left|\begin{array}{cc}
\lambda-2 & 0-3 \\
0-2 & \lambda-7
\end{array}\right| & =0 \\
\left|\begin{array}{cc}
\lambda-2 & -3 \\
-2 & \lambda-7
\end{array}\right| & =0 \\
(\lambda-2)(\lambda-7)-(-3)(-2) & =0 \\
\lambda^{2}-9 \lambda+14-6 & =0 \\
\lambda^{2}-9 \lambda+8 & =0 \\
(\lambda-1)(\lambda-8) & =0
\end{aligned}
$$

Eigenvalues: $\lambda_{1}=1, \lambda_{2}=8$
6) Diagonalize the matrix $A=\left[\begin{array}{cc}1 & 0 \\ 6 & -1\end{array}\right]$ by giving matrices P and D such that $D=P^{-1} A P$, where D is diagonal. You do not have to give P^{-1}. (16 points)

Find the eigenvalues of A :
A is a lower triangular matrix, so the eigenvalues are on the main diagonal: 1 and -1 .

Find two linearly independent eigenvectors of A :
Since we have $n=2$ distinct real eigenvalues, A is guaranteed to be diagonalizable.

Find an eigenvector for $\lambda_{1}=1$:
Solve the system $[1 I-A \mid \mathbf{0}]$.

$$
\begin{aligned}
& {\left[\begin{array}{cc|c}
1-1 & 0-0 & 0 \\
0-6 & 1-(-1) & 0
\end{array}\right]} \\
& {\left[\begin{array}{cc|c}
0 & 0 & 0 \\
-6 & 2 & 0
\end{array}\right] \quad \text { Now, } R_{1} \leftrightarrow R_{2} .}
\end{aligned}
$$

$$
\left[\begin{array}{cc|c}
-6 & 2 & 0 \\
0 & 0 & 0
\end{array}\right] \text { Now, divide Row } 1 \text { through by }(-6) .
$$

$$
\left[\begin{array}{cc|c}
1 & -1 / 3 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

$$
x_{1}-\frac{1}{3} x_{2}=0 \rightarrow x_{1}=\frac{1}{3} x_{2}
$$

$$
\text { Let } x_{2}=t \text {. }
$$

$$
\begin{gathered}
\left\{\begin{array}{l}
x_{1}=\frac{1}{3} t \\
x_{2}=t
\end{array}\right. \\
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=t\left[\begin{array}{c}
1 / 3 \\
1
\end{array}\right]
\end{gathered}
$$

Let the eigenvector $\mathbf{p}_{1}=\left[\begin{array}{c}1 / 3 \\ 1\end{array}\right]$.

Find an eigenvector for -1 :
Solve the system $[(-1) I-A \mid \mathbf{0}]$.

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-1-1 & 0-0 & 0 \\
0-6 & -1-(-1) & 0
\end{array}\right]} \\
{\left[\begin{array}{ll|l}
-2 & 0 & 0 \\
-6 & 0 & 0
\end{array}\right] \text { Now, } R_{2}+(-3) R_{1} \rightarrow R_{2} .} \\
{\left[\begin{array}{cc|c}
-2 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \text { Now, divide Row 1 through by (-2). }} \\
{\left[\begin{array}{ll|l}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]} \\
x_{1}=0 \\
\text { Let } x_{2}=t . \\
\left\{\begin{array}{l}
x_{1}=0 \\
x_{2}=t
\end{array}\right. \\
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
\text { Let the eigenvector } \mathbf{p}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
\end{gathered}
$$

Construct the diagonalizing matrix, P :

$$
\begin{aligned}
P & =\left[\begin{array}{ll}
\mathbf{p}_{1} & \mathbf{p}_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 / 3 & 0 \\
1 & 1
\end{array}\right]
\end{aligned}
$$

Give D :
Let $D=P^{-1} A P$.

$$
\begin{aligned}
D & =\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
\end{aligned}
$$

(The eigenvalues are switched if the columns of P are switched.)
7) Prove that if A is an orthogonal matrix, then $|A|$ is either 1 or -1 .

Show all steps! (5 points)

Proof 1

A is orthogonal
$\rightarrow A^{-1}=A^{T}$
$\rightarrow\left|A^{-1}\right|=\underbrace{\left|A^{T}\right|}_{=|A|}$
$\rightarrow \frac{1}{|A|}=|A| \quad(|A| \neq 0)$
$\rightarrow 1=|A|^{2}$
$\rightarrow|A|=1$ or -1

Proof 2
A is orthogonal
$\rightarrow A A^{T}=I$
$\rightarrow\left|A A^{T}\right|=\underbrace{|I|}_{=1}$
$\rightarrow|A| \underbrace{\left|A^{T}\right|}_{=|A|}=1$
$\rightarrow|A|^{2}=1$
$\rightarrow|A|=1$ or -1

TRUE or FALSE (12 points; 3 points each)

Assume that A is a real matrix in the statements below.

1) If the linear transformation $T: V \rightarrow W$ is an isomorphism, then $\operatorname{Ker}(T)$ must only consist of a "zero" vector.

True False
If T is an isomorphism, then it is one-to-one, and only $\mathbf{0}_{v}$ gets mapped to $\mathbf{0}_{w}$ (i.e., $\operatorname{Ker}(T)=\left\{\mathbf{0}_{V}\right\}$).
2) If A is a symmetric matrix, then A must be similar to a diagonal matrix.

True
False
Any real symmetric matrix is diagonalizable.
3) If A is a square matrix that has 4 as an eigenvalue with algebraic multiplicity 3 , then the eigenspace for $\lambda=4$ must be three-dimensional.

True

False

Absent additional information, we can only say that the 4 -eigenspace can be $1-, 2-$, or 3 dimensional.
4) If A is a square matrix whose columns form an orthogonal set of nonzero vectors, then A must be an orthogonal matrix.

True False
The column vectors may not all be unit vectors, which is what we require for an orthogonal matrix. The column vectors of A must form an orthonormal set of vectors for A to be an orthogonal matrix.

