<u>FINAL</u> ## MATH 254 - SUMMER 2001 - KUNIYUKI Show all appropriate work (as we have done in class) for full credit! A scientific calculator <u>is</u> allowed on this quiz. This final will be scored out of 100 points; the score will then be doubled. You do <u>not</u> have to rationalize denominators or simplify radicals (e.g., $\sqrt{12} = 2\sqrt{3}$). 1) Find the inverse of the matrix $$A = \begin{bmatrix} 0 & 4 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$ (8 points) 2) Find the determinant of the matrix $$A = \begin{vmatrix} 0 & 0 & 0 & 2 \\ 3 & 1 & 2 & 7 \\ 6 & -2 & 3 & -1 \\ 5 & 0 & 0 & 4 \end{vmatrix}.$$ (10 points) 3) Let $\mathbf{v}_1 = (1,2)$ and $\mathbf{v}_2 = (3,5)$. Express (-7,-9) as a linear combination of \mathbf{v}_1 and \mathbf{v}_2 . There should be no unknowns in your final expression. (10 points) 4) The vectors \mathbf{x} , \mathbf{y} , and \mathbf{z} are three vectors in \mathbb{R}^n for some fixed n. Prove that if \mathbf{x} is orthogonal to both \mathbf{y} and \mathbf{z} , then \mathbf{x} is orthogonal to any linear combination of \mathbf{y} and \mathbf{z} . (10 points) 5) The linear transformation $T: \mathbb{R}^5 \to \mathbb{R}^4$ is defined by $T(\mathbf{x}) = A\mathbf{x}$, where $$A = \begin{bmatrix} 1 & 0 & 4 & 3 & 0 \\ 0 & 1 & -2 & 5 & 0 \\ 0 & 0 & 0 & 0 & 3 \\ 2 & 0 & 8 & 6 & 0 \end{bmatrix}.$$ Find a basis for the Range of *T*. (10 points) 6) Orthogonally diagonalize the symmetric matrix $$A = \begin{bmatrix} 1 & 4 \\ 4 & 1 \end{bmatrix}$$ by giving an orthogonal matrix P and a diagonal matrix D such that $D = P^{-1}AP$ (or, equivalently, $D = P^{T}AP$). Hint: The eigenvalues of this matrix (A) are -3 and 5. (There is space on the back of this sheet, so you can continue your work.) (25 points) 7) A and P are $n \times n$ matrices. If det(A) = 4, and det(P) = 7, what is $det(P^{-1}AP)$? (6 points) ## TRUE OR FALSE | For each statement, circle "True" or "False" as appropriate.
You do <u>not</u> have to justify any of your responses.
(21 points; 3 points each) | | | |--|------|-------| | a) A homogeneous system of linear equations must be consistent. | | | | | True | False | | | | | | | | | | | | | | b) If A , B , and C are $n \times n$ matrices, and if $AB = AC$, then it must be true that $B = C$. | | | | | True | False | | | | | | | | | | | | | | c) All elementary matrices are invertible. | | | | | True | False | | | | | | | | | | | | | | d) The set of rational numbers is a subspace of \mathbf{R} , the vector space of real numbers. | | | | | True | False | e) A set of five vectors in \mathbb{R}^3 must be linearly dependent. True False f) A set of five vectors in \mathbb{R}^3 must span \mathbb{R}^3 . True False g) If the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$ is defined by $T(\mathbf{x}) = A\mathbf{x}$, where $$A = \begin{bmatrix} 2 & 3 & 2 \\ 0 & 1 & -5 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{bmatrix}$$, then *T* is a one-to-one transformation. True False