$\qquad$

## FINAL <br> MATH 254 - SUMMER 2001 - KUNIYUKI

Show all appropriate work (as we have done in class) for full credit!
A scientific calculator is allowed on this quiz.
This final will be scored out of 100 points; the score will then be doubled.
You do not have to rationalize denominators or simplify radicals (e.g., $\sqrt{12}=2 \sqrt{3}$ ).

1) Find the inverse of the matrix

$$
A=\left[\begin{array}{lll}
0 & 4 & 0 \\
1 & 0 & 0 \\
0 & 0 & 2
\end{array}\right] .
$$

(8 points)
2) Find the determinant of the matrix

$$
A=\left|\begin{array}{cccc}
0 & 0 & 0 & 2 \\
3 & 1 & 2 & 7 \\
6 & -2 & 3 & -1 \\
5 & 0 & 0 & 4
\end{array}\right| .
$$

(10 points)
3) Let $\mathbf{v}_{1}=(1,2)$ and $\mathbf{v}_{2}=(3,5)$. Express $(-7,-9)$ as a linear combination of $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$. There should be no unknowns in your final expression. (10 points)
4) The vectors $\mathbf{x}, \mathbf{y}$, and $\mathbf{z}$ are three vectors in $R^{n}$ for some fixed $n$. Prove that if $\mathbf{x}$ is orthogonal to both $\mathbf{y}$ and $\mathbf{z}$, then $\mathbf{x}$ is orthogonal to any linear combination of $\mathbf{y}$ and $\mathbf{z}$. (10 points)
5) The linear transformation $T: R^{5} \rightarrow R^{4}$ is defined by $T(\mathbf{x})=A \mathbf{x}$, where

$$
A=\left[\begin{array}{ccccc}
1 & 0 & 4 & 3 & 0 \\
0 & 1 & -2 & 5 & 0 \\
0 & 0 & 0 & 0 & 3 \\
2 & 0 & 8 & 6 & 0
\end{array}\right] .
$$

Find a basis for the Range of $T$. (10 points)
6) Orthogonally diagonalize the symmetric matrix

$$
A=\left[\begin{array}{ll}
1 & 4 \\
4 & 1
\end{array}\right]
$$

by giving an orthogonal matrix $P$ and a diagonal matrix $D$ such that $D=P^{-1} A P$ (or, equivalently, $D=P^{T} A P$ ).

Hint: The eigenvalues of this matrix $(A)$ are -3 and 5 .
(There is space on the back of this sheet, so you can continue your work.)
(25 points)

You can continue on the back of this sheet.
Remember that $P$ must be an orthogonal matrix!
6) cont.)
7) $A$ and $P$ are $n \times n$ matrices. If $\operatorname{det}(A)=4$, and $\operatorname{det}(P)=7$, what is $\operatorname{det}\left(P^{-1} A P\right)$ ? (6 points)

## TRUE OR FALSE

For each statement, circle "True" or "False" as appropriate.
You do not have to justify any of your responses.
(21 points; 3 points each)
a) A homogeneous system of linear equations must be consistent.
True False
b) If $A, B$, and $C$ are $n \times n$ matrices, and if $A B=A C$, then it must be true that $B=C$.
True False
c) All elementary matrices are invertible.
True
False
d) The set of rational numbers is a subspace of $\mathbf{R}$, the vector space of real numbers.
e) A set of five vectors in $R^{3}$ must be linearly dependent.
f) A set of five vectors in $R^{3}$ must span $R^{3}$.

True
False
g) If the linear transformation $T: R^{3} \rightarrow R^{4}$ is defined by $T(\mathbf{x})=A \mathbf{x}$, where $A=\left[\begin{array}{ccc}2 & 3 & 2 \\ 0 & 1 & -5 \\ 0 & 0 & 4 \\ 0 & 0 & 0\end{array}\right]$, then $T$ is a one-to-one transformation.

True

False

