QUIZ 1 - SOLUTIONS

MATH 254 - SUMMER 2001 - KUNIYUKI CHAPTERS 1, 2, 3

1) The given equations are already in standard form, and the like terms are lined up.

Now, write the corresponding augmented matrix and use row operations to obtain the reduced row-echelon (RRE) form.

$$\begin{bmatrix} \mathbf{3} & -2 & 6 & -5 & 2 \\ 0 & 1 & -3 & 0 & -5 \\ \mathbf{6} & -4 & 12 & -7 & 16 \end{bmatrix}$$

We can use the "3" to turn the "6" into a "0". Let's add (-2) times the first row to the third row.

$$R_3 + (-2)R_1 \rightarrow R_3$$

Old R_3	6	-4	12	-7	16
$(-2)R_1$	-6	4	-12	10	-4
New R_3	0	0	0	3	12

$$\begin{bmatrix} 3 & -2 & 6 & -5 & 2 \\ 0 & 1 & -3 & 0 & -5 \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{3} & \mathbf{12} \end{bmatrix}$$

Now, divide Row 3 through by 3 to change the "3" into a "1".

$$\frac{R_3}{3}$$
 or $\frac{1}{3}R_3 \rightarrow R_3$

$$\begin{bmatrix} 3 & -2 & 6 & -5 & 2 \\ 0 & 1 & -3 & 0 & -5 \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{4} \end{bmatrix}$$

This matrix is almost in row-echelon form (except for the fact that the "3" in the upper left corner should be a "1"). Still, we can "eliminate up" at this point.

Let's turn the "-5" into a "0" by adding 5 times Row 3 to Row 1.

$$R_1 + 5R_3 \rightarrow R_1$$

Old R_1	3	-2	6	-5	2
$5R_3$	0	0	0	5	20
New R_1	3	-2	6	0	22

$$\begin{bmatrix} 3 & -2 & 6 & 0 & 22 \\ 0 & 1 & -3 & 0 & -5 \\ 0 & 0 & 0 & 1 & 4 \end{bmatrix}$$

Now, turn the "-2" into a "0" by adding 2 times Row 2 to Row 1.

$$R_1 + 2R_2 \rightarrow R_1$$

Old R_1	3	-2	6	0	22
$2R_2$	0	2	-6	0	-10
New R_1	3	0	0	0	12

$$\begin{bmatrix} 3 & 0 & 0 & 0 & | & 12 \\ 0 & 1 & -3 & 0 & | & -5 \\ 0 & 0 & 0 & 1 & | & 4 \end{bmatrix}$$

Now, divide Row 1 through by 3 to change the "3" into a "1".

$$\frac{R_1}{3}$$
 or $\frac{1}{3}R_1 \to R_1$

$$\begin{bmatrix}
1 & 0 & 0 & 0 & | & 4 \\
0 & 1 & -3 & 0 & | & -5 \\
0 & 0 & 0 & 1 & | & 4
\end{bmatrix}$$

We now have the reduced row-echelon (RRE) form of the original augmented matrix.

Notice that the third column in the coefficient matrix does <u>not</u> have a "leading 1", so x_3 is a free variable. The system is consistent, so there are infinitely many solutions.

Write the corresponding system.

$$\begin{cases} x_1 &= 4 \\ x_2 - 3x_3 &= -5 \\ x_4 = 4 \end{cases}$$

Move the free variable, x_3 , to the right side in the second equation.

$$\begin{cases} x_1 = 4 \\ x_2 = 3x_3 - 5 \\ x_4 = 4 \end{cases}$$

Parametrization: Let $x_3 = t$.

Solution set in parametric form:

$$\begin{cases} x_1 = 4 \\ x_2 = 3t - 5 \\ x_3 = t \\ x_4 = 4 \end{cases}$$

t is any real number.

2)
$$X^{T}X = \begin{bmatrix} 1 & 1 & 1 \\ -5 & 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & -5 \\ 1 & 3 \\ 1 & 4 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 2 \\ 2 & 50 \end{bmatrix}$$

Using the shortcut for 2×2 inverses:

$$(X^T X)^{-1} = \frac{1}{(3)(50) - (2)(2)} \begin{bmatrix} 50 & -2 \\ -2 & 3 \end{bmatrix}$$

$$= \frac{1}{146} \begin{bmatrix} 50 & -2 \\ -2 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{50}{146} & \frac{-2}{146} \\ \frac{-2}{146} & \frac{3}{146} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{25}{73} & -\frac{1}{73} \\ -\frac{1}{73} & \frac{3}{146} \end{bmatrix}$$

If A is invertible, then A^{-1} exists.

$$A\mathbf{x} = \mathbf{b}$$

$$A^{-1}A\mathbf{x} = A^{-1}\mathbf{b}$$

$$I\mathbf{x} = A^{-1}\mathbf{b}$$

$$\mathbf{x} = A^{-1}\mathbf{b}$$

<u>Uniqueness:</u> Assume that \mathbf{x}_1 and \mathbf{x}_2 are solutions.

$$A\mathbf{x}_1 = \mathbf{b}$$
 and $A\mathbf{x}_2 = \mathbf{b}$

Then,
$$A\mathbf{x}_1 = A\mathbf{x}_2$$
.

If *A* is invertible, then we can cancel the *A* on the left end of both sides.

We then conclude that
$$\mathbf{x}_1 = \mathbf{x}_2$$
.

That is, any two solutions to the system must be the same.

a)

Use EROs until we get an upper triangular matrix *U*. Record the corresponding elementary matrices along the way.

$$A = \begin{bmatrix} 1 & 5 & -4 \\ 0 & 3 & 1 \\ 4 & 14 & -14 \end{bmatrix}$$

$$R_3 + (-4)R_1 \rightarrow R_3$$

$$\begin{bmatrix}
 1 & 5 & -4 \\
 0 & 3 & 1 \\
 0 & -6 & 2
\end{bmatrix}
 \qquad E_1 = \begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 -4 & 0 & 1
\end{bmatrix}$$

$$R_3 + 2R_2 \rightarrow R_3$$

$$\sim \begin{bmatrix} 1 & 5 & -4 \\ 0 & 3 & 1 \\ 0 & 0 & 4 \end{bmatrix} \qquad E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \mathbf{2} & 1 \end{bmatrix}$$

Now, construct L by taking I_3 and filling in the <u>opposites</u> of the boldfaced entries above.

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & -2 & 1 \end{bmatrix}$$

Idea:

b)

$$A\mathbf{x} = \mathbf{b}$$

$$L\underbrace{U}_{\mathbf{x}} = \mathbf{b}$$

First, solve $L\mathbf{y} = \mathbf{b}$.

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 4 & -2 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} -10 \\ 0 \\ -28 \end{bmatrix}$$

Write the corresponding system:

$$\begin{cases} y_1 & = -10 \\ y_2 & = 0 \\ 4y_1 - 2y_2 + y_3 & = -28 \end{cases}$$

Using forward substitution, we get:

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} -10 \\ 0 \\ 12 \end{bmatrix}$$

Second, solve $U\mathbf{x} = \mathbf{y}$.

$$\begin{bmatrix} 1 & 5 & -4 \\ 0 & 3 & 1 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -10 \\ 0 \\ 12 \end{bmatrix}$$

Write the corresponding system:

$$\begin{cases} x_1 + 5x_2 - 4x_3 = -10 \\ 3x_2 + x_3 = 0 \\ 4x_3 = 12 \end{cases}$$

Using back substitution, we get our solution vector for the problem:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7 \\ -1 \\ 3 \end{bmatrix}$$

Let's expand along the third column, since it has the most zeros. Its only nonzero entry is the "4"; the corresponding sign from the sign matrix is "-" [or you could observe that $(-1)^{i+j} = (-1)^{4+3} = (-1)^7 = -1$]. To get the submatrix for the corresponding minor, we delete the row and the column containing the "4".

$$\begin{vmatrix} 1 & 7 & \mathbf{0} & -2 & 0 \\ 3 & -8 & \mathbf{0} & 5 & 5 \\ 4 & -3 & \mathbf{0} & 6 & 0 \\ -\mathbf{1} & \mathbf{7} & \mathbf{4} & -\mathbf{3} & \mathbf{15} \\ 4 & 2 & \mathbf{0} & 1 & 0 \end{vmatrix} = \underbrace{(-1)}_{\text{from sign matrix}} (4) \begin{vmatrix} 1 & 7 & -2 & \mathbf{0} \\ 3 & -8 & 5 & \mathbf{5} \\ 4 & -3 & 6 & \mathbf{0} \\ 4 & 2 & 1 & \mathbf{0} \end{vmatrix}$$

Let's expand along the fourth column, since it has the most zeros.

Its only nonzero entry is the "5"; the corresponding sign from the sign matrix is "+" [or you could observe that $(-1)^{i+j} = (-1)^{2+4} = (-1)^6 = 1$]. To get the submatrix for the corresponding minor, we delete the row and the column containing the "5".

$$= -4 \begin{vmatrix} 1 & 7 & -2 & \mathbf{0} \\ \mathbf{3} & -\mathbf{8} & \mathbf{5} & \mathbf{5} \\ 4 & -3 & 6 & \mathbf{0} \\ 4 & 2 & 1 & \mathbf{0} \end{vmatrix}$$
$$= -4 \left(5 \begin{vmatrix} 1 & 7 & -2 \\ 4 & -3 & 6 \\ 4 & 2 & 1 \end{vmatrix} \right)$$
$$= -20 \begin{vmatrix} 1 & 7 & -2 \\ 4 & -3 & 6 \\ 4 & 2 & 1 \end{vmatrix}$$

You could then use Sarrus's Rule or expansion by minors/cofactors to compute the " 3×3 " determinant, which turns out to be 85.

$$=-20(85)$$

= -1700

6) A has order n = 10. See Theorem 3.6 on p.130.

$$|2A| = 2^{n} |A|$$

= $2^{10}(3)$
= $(1024)(3)$
= 3072

7) If A is invertible, then A^{-1} exists.

$$AA^{-1} = I$$

$$|AA^{-1}| = |I|$$

$$|A||A^{-1}| = 1$$

$$|A^{-1}| = \frac{1}{|A|}$$

TRUE or FALSE

- 1) **False**. The corresponding coefficient matrix is "fat" if the system is consistent, then there are one or more free variables that ensure the existence of infinitely many solutions.
- 2) **True**. For example, consider the system

$$\begin{cases} x = 0 \\ y = 0 \\ 2x = 0 \end{cases}$$

Augmented matrix:
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad (x = 0, y = 0) \text{ is then the unique solution.}$$

- 3) **True**. The 7 "leading ones" must lie along the main diagonal. In RRE form, it is required that the other entries in any column containing a "leading one" must be zeros. I_7 is the only 7×7 matrix that satisfies these conditions.
- 4) **False**. It is true that:

$$(A-B)^{2} = (A-B)(A-B)$$

$$= A(A-B) - B(A-B)$$

$$= AA - AB - BA + BB$$

$$= A^{2} - AB - BA + B^{2}$$

However, matrix multiplication is not commutative. There are matrices A and B for which $AB \neq BA$; then, the last expression does not equal $A^2 - 2AB + B^2$.