QUIZ 2 MATH 254 - SUMMER 2001 - KUNIYUKI CHAPTER 4

Show all appropriate work (as we have done in class) for full credit!

A scientific calculator <u>is</u> allowed on this quiz.

1) If $\mathbf{v} = (3, 0, -2)$ and $\mathbf{w} = (-4, 2, 1)$, find $3\mathbf{v} - 4\mathbf{w}$. (4 points)

2) (Deleted) (4 points)

3) Let A be a fixed 3×5 matrix. Prove that the set $\{\mathbf{x} \in R^5 : A\mathbf{x} = \mathbf{0}\}$ is a subspace of R^5 by proving that it is closed under vector addition and scalar multiplication. (" \in " means "is a member of") (8 points)

4) For each of the following sets, circle "Yes" if it is a vector space, or circle "No" if it is not. Assume that the "standard" operations for vector addition and scalar multiplication are being used in each case. (20 points; 4 points each)		
a) The set of all polynomials in x whose degree is exactly three		
	Yes	No
b) The set of all real 4×3 matrices		
	Yes	No
c) The set of standard basis vectors in \mathbb{R}^5		
	Yes	No
d) The set of all real 2×2 matrices in upper triangular form		
	Yes	No
e) The set $\{(x, 0, 2x): x \text{ is a real number}\}$		
	Yes	No

5) For each of the following sets of vectors, circle "Linearly independent" if it is linearly independent, or "Linearly dependent" if it is linearly dependent. (24 points; 4 points each)

a)
$$\{(4, 3), (0, 0)\}$$

Linearly independent

Linearly dependent

Linearly independent

Linearly dependent

c)
$$\{(1, 0, 2), (2, 4, 4), (0, 1, 0)\}$$

Linearly independent

Linearly dependent

d)
$$\{(4, 0, 0), (2, 4, 0), (1, 3, -2)\}$$

Linearly independent

Linearly dependent

e) Any set of 10 vectors in \mathbb{R}^7 .

Linearly independent

Linearly dependent

f) A set of three vectors $\{\mathbf v_1, \mathbf v_2, \mathbf v_3\}$ in $\mathbb R^4$ with the property that $\mathbf v_1 - 3\mathbf v_2 + 2\mathbf v_3 = \mathbf 0$.

Linearly independent

Linearly dependent

- 6) Consider the vector space $M_{2,2}$, the set of real 2×2 matrices. (6 points total)
 - a) Write the standard basis for this vector space. (4 points)

- b) What is the dimension of this vector space? (2 points)
- 7) True or False: A set of 10 vectors that span R^{10} must be a basis for R^{10} . (4 points)

8) (26 points total)

Consider the matrix

$$A = \begin{bmatrix} 1 & -3 & 4 & -1 & 9 \\ -2 & 6 & -6 & -1 & -10 \\ -3 & 9 & -6 & -6 & -3 \\ 3 & -9 & 4 & 9 & 0 \end{bmatrix}$$

By applying elementary row operations (EROs), A can be reduced to the following reduced row-echelon form matrix:

$$B = \begin{bmatrix} 1 & -3 & 0 & 5 & 0 \\ 0 & 0 & 1 & -\frac{3}{2} & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- a) What is the rank of A? (4 points)
- b) Write a basis for Row(A), the row space of A. (6 points)

c) Write a basis for Col(A), the column space of A. (6 points)

Reminder:

$$A = \begin{bmatrix} 1 & -3 & 4 & -1 & 9 \\ -2 & 6 & -6 & -1 & -10 \\ -3 & 9 & -6 & -6 & -3 \\ 3 & -9 & 4 & 9 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 1 & -3 & 0 & 5 & 0 \\ 0 & 0 & 1 & -\frac{3}{2} & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & -3 & 0 & 5 & 0 \\ 0 & 0 & 1 & -\frac{3}{2} & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

d) Write a basis for N(A), the nullspace of A. (10 points)

9) The rank of a 7×10 matrix is 4. What is the nullity (i.e., the dimension of the nullspace) of the matrix? (4 points)