\qquad

OUIZ 3
 MATH 254 - SUMMER 2001 - KUNIYUKI CHAPTERS 5, 6

Show all appropriate work (as we have done in class) for full credit!
A scientific calculator is allowed on this quiz.
You do not have to rationalize denominators or simplify radicals (e.g., $\sqrt{12}=2 \sqrt{3}$).

1) If $\mathbf{v}=(4,2,-3)$, find the unit vector in the direction of \mathbf{v}. In other words, normalize \mathbf{v}. (5 points)
2) Find the angle between the vectors $\mathbf{v}=(3,1,0)$ and $\mathbf{w}=(2,-3,5)$. Indicate whether your final answer is in degrees or in radians. If you are using degrees, round off your answer to the nearest hundredth of a degree; if you are using radians, round off your answer to three decimal places. (15 points)
3) If \mathbf{v} and \mathbf{w} are orthogonal vectors, what must be their dot product? (2 points)
4) The set of vectors below is a basis for a two-dimensional subspace of R^{3}. Use the Gram-Schmidt orthonormalization process to transform this basis

$$
\left\{\left[\begin{array}{c}
3 \\
-4 \\
5
\end{array}\right],\left[\begin{array}{c}
-3 \\
14 \\
-7
\end{array}\right]\right\}
$$

into an orthonormal basis for the same subspace. (25 points)
5) The set $\left\{\mathbf{b}_{\mathbf{1}}, \mathbf{b}_{\mathbf{2}}\right\}$ is a basis for R^{2}. Let $T: R^{2} \rightarrow R^{2}$ be a linear transformation such that $T\left(\mathbf{b}_{\mathbf{1}}\right)=(3,5)$ and $T\left(\mathbf{b}_{\mathbf{2}}\right)=(-1,4)$. Find $T\left(2 \mathbf{b}_{\mathbf{1}}+5 \mathbf{b}_{\mathbf{2}}\right)$. (7 points)
6) The linear transformation $T: R^{5} \rightarrow R^{4}$ is defined by $T(\mathbf{x})=A \mathbf{x}$ for some matrix A. (8 points total)
a) What is the size of A (4 points)
b) If $\operatorname{rank}(T)=3$, what is the dimension of $\operatorname{Ker}(T)$? (4 points)
7) The linear transformation T is defined by $T(\mathbf{x})=A \mathbf{x}$, where

$$
A=\left[\begin{array}{ccccc}
1 & -2 & 4 & 5 & 0 \\
0 & 0 & 3 & -1 & 0 \\
0 & 0 & 0 & 2 & 6 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

Assume that the domain of T is R^{5} and the codomain is R^{4}. (12 points total; 4 points each)
a) What is the dimension of Range (T) ?
b) What is $\operatorname{nullity}(T)$?
c) Yes or No: Is T an onto transformation?
8) Prove that if A and B are similar $n \times n$ matrices, then A^{2} is similar to B^{2}. (6 points)
9) Let the linear transformation $T: R^{2} \rightarrow R^{2}$ be defined by

$$
T(x, y)=(x+3 y, 2 x-y)
$$

(20 points total)
a) Find the standard matrix for T. (5 points)
b) Let $B=\{(1,0),(0,1)\}$, the standard basis of R^{2}.

Let $B^{\prime}=\{(1,4),(2,3)\}$. Find the matrix for T relative to B^{\prime}. (15 points)

