\qquad

QUIZ 4
 MATH 254 - SUMMER 2001-KUNIYUKI CHAPTERS 7, 8

Show all appropriate work (as we have done in class) for full credit!
A scientific calculator is allowed on this quiz.
You do not have to rationalize denominators or simplify radicals (e.g., $\sqrt{12}=2 \sqrt{3}$).

1) Find the eigenvalues of $A=\left[\begin{array}{cc}1 & 1 \\ -2 & 4\end{array}\right]$. (20 points)
2) Diagonalize the matrix $A=\left[\begin{array}{cc}2 & 2 \\ -1 & 5\end{array}\right]$ by giving matrices P and D such that $D=P^{-1} A P$, where D is diagonal. You do not have to give P^{-1}. Hint: The eigenvalues of this matrix are 3 and 4. (30 points)
3) The matrix A below is an orthogonal matrix. Write A^{-1}, the inverse matrix. (5 points)

$$
A=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\
0 & 1 & 0
\end{array}\right]
$$

4) Let $A=\left[\begin{array}{cc}2 i & 3-i \\ 4 & 5 i\end{array}\right]$ and $B=\left[\begin{array}{cc}2+i & -i \\ 4 i & 3\end{array}\right]$. Find the matrix product $A B$. The entries of your final answer must be in standard form. (15 points)
5) Let $z=4-5 i$. Find $|z|$. (5 points)
6) Perform the division and write your final answer in standard form:

$$
\frac{3 i}{2-5 i}
$$

(10 points)
7) The linear transformation $T: C^{2} \rightarrow C^{2}$ is given by $T(\mathbf{v})=A \mathbf{v}$ where

$$
A=\left[\begin{array}{cc}
0 & 4 \\
4 i & 2 i
\end{array}\right]
$$

(15 points total)
a) Find the image of $\mathbf{v}=\left[\begin{array}{c}4 \\ 3+2 i\end{array}\right]$ under this transformation. (6 points)
b) Find the preimage of $\mathbf{w}=\left[\begin{array}{l}12 \\ 8 i\end{array}\right]$. (9 points)

