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CHAPTER 7: SYSTEMS AND INEQUALITIES

SECTIONS 7.1-7.3: SYSTEMS OF EQUATIONS

PART A: INTRO

A solution to a system of equations must satisfy all of the equations in the system.

In your Algebra courses, you should have learned methods for solving systems of linear
equations, such as:

  

A+ B = 1

A− 4B = 11

⎧
⎨
⎩

We will solve this system using both the Substitution Method and the
Addition / Elimination Method in Section 7.4 on Partial Fractions.

In some cases, these methods can be extended to nonlinear systems, in which at least one
of the equations is nonlinear.
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PART B: THE SUBSTITUTION METHOD

See Example 1 on p.497.

Example (#8 on p.503)

Solve the nonlinear system: 
  

3x + y = 2

x3 − 2 + y = 0

⎧
⎨
⎩

Solution

We can, for example,

(Step 1) Solve the second equation for y in terms of x and then

(Step 2) Perform a substitution into the first equation.

   

3x + y = 2 ⇒ 3x + 2 − x3( ) = 2

x3 − 2 + y = 0 ⇒ y = 2 − x3

Call this star.
    3x + 2 − x3 = 2 0

⎧

⎨
⎪

⎩
⎪

3x − x3 = 0

We may prefer to rewrite this last equation so that the nonzero side
has a positive leading coefficient. We’re more used to that setup.

  0 = x3 − 3x

Step 3) Solve   0 = x3 − 3x  for x.

Warning: Remember that dividing both sides by x is
risky. We may lose solutions. We prefer the Factoring
method.

  
  
0 = x x2 − 3( )

You could factor 
  

x2 − 3( )  over R or stop factoring here.
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Apply the ZFP (Zero Factor Property):

  x = 0           or          

  

x2 − 3= 0

x2 = 3

x = ± 3

Warning: We’re not done yet! We need to find the corresponding
y-values.

Step 4) Back-substitute into star.

Observe that: 
 

3( )3

= 3( ) 3( ) 3( ) = 3 3

 x   y = 2 − x3

0
 
2 − 0( )3

= 2

 3
 
2 − 3( )3

= 2 − 3 3

 − 3
 
2 − − 3( )3

= 2 − −3 3( ) = 2 + 3 3

Step 5) Write the solution set.

This is usually required if you are solving a system of equations.

Warning: Make sure that your solutions are written in the form 
  

x, y( ) ,

not 
  

y, x( ) .

The solution set here is:

 
0,2( ) , 3, 2 − 3 3( ) , − 3, 2 + 3 3( ){ }

This consists of three real solutions written as ordered pairs.
We assume that ordered pairs are appropriate, since no mention is
made of z or other variables.



(Sections 7.1-7.3: Systems of Equations)  7.04

Step 6) Check your solutions in the given system. (Optional)

Warning: There is a danger in trying to check solutions in a later
equivalent system that you have written down, because you may have
made an error by that point. Use the original system, before you got
your dirty hands all over it!

For example, we can check the solution 
 
0,2( )  in the given system:

  

3x + y = 2

x3 − 2 + y = 0

⎧
⎨
⎩

Remember that a solution to a system of equations must satisfy
all of the equations in the system.

 

3 0( ) + 2( ) = 2 ⇒ 2 = 2

0( )3
− 2 + 2( ) = 0 ⇒ 0 = 0

⎧
⎨
⎪

⎩⎪

The solution 
 
0,2( )  checks out.
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PART C: THE GRAPHICAL METHOD

The Graphical Method for solving a system of equations requires that we graph all of the
equations and then find the resulting intersection points common to all the graphs, if any.
These points correspond to the real solutions to the system.

Warning: Books neglect to mention that this method is highly unreliable. For example,
how can we tell visually if an intersection point is at 

 
0,2( )  as opposed to, say,

 
0.01,1.98( )? Although many textbook problems are designed to have “nice” solutions,

we can’t always assume that our solutions will only consist of integer coordinates.

Recall our Example from Part B. The solution set for the system

  

3x + y = 2

x3 − 2 + y = 0

⎧
⎨
⎩

was 
 

0,2( ) , 3, 2 − 3 3( ) , − 3, 2 + 3 3( ){ } . Consider the graphs of the two equations

in the system. Based only on the figure given for #8 on p.503 (or the one below), could
you have obtained the last two solutions exactly from mere visual inspection?

Note: 
 

3, 2 − 3 3( ) ≈ 1.7, −3.2( ) , and 
 
− 3, 2 + 3 3( ) ≈ −1.7, 7.2( )
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The figure is helpful, however, in that it seems to confirm that the system has three real
solutions (corresponding to the three red intersection points), and (with the help of a
calculator) the three solutions we found seem to roughly check out graphically, at least up
to the limits of our vision and the precision of the figure.

The graph in black is the graph of   3x + y = 2 , which can be rewritten as   y = −3x + 2 .

The graph in blue is the graph of   x
3 − 2 + y = 0 , which can be rewritten as   y = − x3 + 2 .

You can roughly sketch these graphs by hand, but it may be difficult to accurately locate
intersection points.

Example

Find all real solutions of the system: 

  

1

2
y =

1

2
x +1

x2 + y2 = 1

⎧
⎨
⎪

⎩⎪

Solution

Let’s multiply both sides of the first equation “through” by 2.
(i.e., We multiply each term on both sides by 2.) We obtain:

  

y = x + 2

x2 + y2 = 1

⎧
⎨
⎩

Method 1 (Graphical Method)

The first equation gives us the line below.
The second equation gives us the unit circle below.

There are no intersection points, so there are no real solutions to the
system. The solution set is: ∅ , the empty or null set.
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Method 2 (Substitution Method)

  

y = x + 2

x2 + y2 = 1

⎧
⎨
⎩

The first equation is already solved for y in terms of x.
Let’s substitute into the second equation.

  

x2 + y2 = 1

x2 + x + 2( )2
= 1

x2 + x2 + 4x + 4 = 1

2x2 + 4x + 4 = 1

2x2 + 4x + 3= 0

According to the QF (Quadratic Formula), the complex solutions of

this equation are: 
 

−4 ± −8

4
, which simplify to 

  

−2 ± i 2

2
, or

  
−1±

2

2
i .

There are no viable real values for x, so the system has no real
solutions, and the solution set is ∅ .

This confirms our findings from Method 1.

Note: It is not necessary to work out the entire QF to conclude that
there are no viable real values for x. It is sufficient to observe that the

discriminant is negative: 
  
b2 − 4ac = 4( )2

− 4 2( ) 3( ) = −8 < 0

In other problems, the discriminant can be used in conjunction with
the Test for Factorability described in Section 1.5: Notes 1.48 to see if
our equation can be solved quickly.

In Precalculus, a system of equations with no real solutions (i.e., an empty solution set) is
called inconsistent in the sense that there is no real solution that consistently solves all of
the equations in the system. The equations cannot be reconciled.
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PART D: THE ADDITION / ELIMINATION METHOD

This method is based on the principle that, when you add equals to equals, you get
equals. See Examples 1-3 on pp.507-509.

Example

Solve the nonlinear system: 
  

2x + 5y2 = 35

7x + 2y2 = 14

⎧
⎨
⎪

⎩⎪

Solution

The Substitution Method may get messy if we try to solve for x or   y
2  in

either equation.

The Addition Method may not be helpful to solve some nonlinear systems,
but it is helpful here.

We can easily eliminate the   y
2  terms, for example, by:

1) Multiplying “through” both sides of the first equation by 2,
2) Multiplying “through” both sides of the second equation by 

 
−5( ) ,

and
3) Adding equals to equals to obtain a third equation that we can use

to crack the system. We will informally refer to this process as
adding equations.

  

2x + 5y2 = 35 ←⋅ 2( )
7x + 2y2 = 14 ←⋅ −5( )
⎧
⎨
⎪

⎩⎪

In our new equivalent system, the coefficients of the   y
2  terms will be

opposites, and (when adding the equations) we will be able to
eliminate those terms and then solve for x.

  

4x +10y2 = 70

−35x −10y2 = −70

⎧
⎨
⎪

⎩⎪

−31x = 0

x = 0
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Warning 1: Remember to multiply the right-hand sides of the given
equations by 2 and  −5 , respectively. People often focus on the left-hand
sides so much that they forget about the right-hand sides.

Warning 2: Why didn’t we multiply the second equation by 5 (instead of

 −5) and then subtract equals from equals? Although that would have been
a correct procedure, people often make mechanical errors when subtracting.
We generally prefer to add, instead, even if that means that we multiply both
sides of an equation by a negative number. One possible exception is given
in Notes 7.11. This issue will come up later in Chapter 8, when we study
matrices.

Warning 3: We were lucky that the right-hand side of the resulting equation
is 0, but it doesn’t always have to be 0. What if you had eliminated the x
terms, instead?

We can now “plug in”   x = 0  into any of the four equations at the bottom of
Notes 7.08 that contain both x and y. If we plug into the first given equation:

  

2x + 5y2 = 35

2 0( ) + 5y2 = 35

5y2 = 35

y2 = 7

y = ± 7

For our solutions, we require that   x = 0 , and then y can either be  7  or

 − 7 .

Warning: Make sure you know which values of y correspond to which
values of x. In Multivariable Calculus (Calculus III: Math 252 at Mesa), this
issue will arise in a big way when you study Lagrange Multipliers and
optimization.

Our solution set is: 
 

0, 7( ) , 0, − 7( ){ } .

Some people write 
 
0, ± 7( ) , though that may be ambiguous.

See Warning 1 in Section 1.5: Notes 1.46.
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PART E: HOW MANY SOLUTIONS CAN A SYSTEM OF EQUATIONS HAVE?

We have seen nonlinear systems of equations with 0, 2, and 3 solutions. In fact,
nonlinear systems can potentially have any whole number of solutions; they can even
have infinitely many solutions. Consider the system:

  

y = sin x

y = 0

⎧
⎨
⎩

However, the only possibilities for a system of linear equations are: 0, 1, or infinitely
many solutions. Consider systems of two linear equations in two unknowns (say x and y)
– and the graphs of those equations in the xy-plane. Remember that real solutions
correspond to intersection points.

How many solutions? Example System is …

0

different parallel lines

Inconsistent

1

non-parallel lines

Consistent

Infinitely many

coincident lines

Consistent

Warning: The term dependence seems to have different meanings in Introductory
Algebra books and in Linear Algebra books. We will ignore this issue.
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PART F: SPECIAL CASES

Example

Solve the system 
  

x + y = 2

x + y = 1

⎧
⎨
⎩

Solution

Here, it is easy to “subtract” the second equation from the first.
We obtain  0 = 1, which cannot be satisfied by any ordered pair 

  
x, y( ) .

In other words, there is no 
  

x, y( )  for which  0 = 1 is true.

Therefore, the system has no solutions, and the solution set is ∅ .

Technical Logic Note: If this system had a solution 
  

x, y( ) , then  0 = 1 would

have to be true. However, we know that  0 = 1 is not true. Therefore, the
system has no solution. This is an example of indirect reasoning, which is
based on the logical equivalence between an if-then statement and its
contrapositive. (See Notes P.06 to P.08.)

Note: We can also say that, because  x + y = x + y , we require that  2 = 1 be
true for any solution to the system.

We will discuss systems of linear equations with infinitely many solutions at the end of
Section 8.1.
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Example

How many solutions does the following system have?

  

y = x + 2

y = x + 2

0 = 1

⎧

⎨
⎪

⎩
⎪

Solution

If you “subtract” the second equation from the first, then you will obtain
 0 = 0 .

Warning: You may then be tempted to conclude that this system has
infinitely many solutions, especially since the first two equations represent
the same line in the xy-plane. You would be wrong!

The equation  0 = 1 has no solutions; there is no ordered pair 
  

x, y( )  such that

 0 = 1 can be satisfied. (That equation ruins it for everybody!) Therefore, the
system has no solution, and the solution set is ∅ .
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PART G: SYSTEMS OF LINEAR EQUATIONS IN THREE UNKNOWNS
(SAY x, y, and z)

In Section 8.1, we will solve the following system using matrices:

  

2x + 2y − z = 2

x − 3y + z = −28

− x + y = 14

⎧

⎨
⎪

⎩
⎪

In Section 7.3, a non-matrix preview of the 8.1 method is given.

We call this a system in three unknowns, even though there is no z term in the third
equation.

Instead of lines in the xy-plane, we consider planes in xyz-space.

Again, the only possibilities are: 0, 1, or infinitely many solutions.
Real solutions correspond to intersection points common to all the planes.
See the figures on p.522.

Solutions are written as ordered triples of the form 
  

x, y, z( ) .

In general, when there are n unknowns, solutions are written as ordered n-tuples.



(Section 7.4: Partial Fractions)  7.14 

 

SECTION 7.4: PARTIAL FRACTIONS 
 

 

PART A: INTRO 

 

A, B, C, etc. represent unknown real constants.  

Assume that our polynomials have real coefficients. 

 

These Examples deal with rational expressions in x, but the methods here extend to 

rational expressions in y, t, etc.  

 

Review how to add and subtract rational expressions in Section A.4: pp.A38-A39. 

 

 

Review Example 

 

3

x 4

2

x +1
=

3 x +1( )

 Think:
"Who's
missing?"

2 x 4( )
x 4( ) x +1( )

=
x +11

x
2

3x 4

 

 

How do we reverse this process? In other words, how do we find that the  

partial fraction decomposition (PFD) for 

  

x +11

x
2

3x 4
 is 

3

x 4

A partial
fraction
  (PF)

2

x +1
? 

 

The PFD Form that we need depends on the factored form of the denominator. 

Here, the denominator is 
  
x

2
3x 4 , which factors as x 4( ) x +1( ) . 
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PART B: THE BIG PICTURE 

 

You may want to come back to this Part and Part C after you read the Examples starting 

on Notes 7.22. 

 

In Section 2.5, we discussed: 

 

“Factoring Over R” Theorem 

 

Let f x( )  be a nonconstant polynomial in standard form with real coefficients. 

A complete factorization of 
 
f x( )  over R consists of: 

 

1) Linear factors, 

 

2) Quadratic factors that are R-irreducible (see Note below), or 

 

3) Some product of the above, possibly including repeated factors, and 

 

4) Maybe a nonzero constant factor. 

 

Note: A quadratic factor is R-irreducible   

It has no real zeros (or “roots”), and it cannot be nontrivially factored and 

broken down further over R (i.e., using only real coefficients). 

 

Knowing how to factor such an 
 
f x( )  may pose a problem, however! Finding real zeros 

of 
 
f x( )  can help you factor 

 
f x( ) ; remember the Factor Theorem from Sections 2.2 and 

2.3: Notes 2.19 and 2.33. 

 

Example 

 

The hideous polynomial 

 

6x
14
+ 33x

13
+ 45x

12
+117x

11
213x

10
2076x

9
3180x

8
15,024x

7

11,952x
6

32,832x
5

18,240x
4

19,968x
3

9216x
2

 

 

can factor over R as follows: 

 

3x
2

x 3( ) 2x +1( ) x + 4( )
2

x
2
+1( ) x

2
+ 4( )

3
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Technical Note: There are other factorizations over R involving manipulations 

(like “trading”) of constant factors, but we like the fact that the one provided is a 

factorization over Z (the integers), and we have no factors like 6x + 3( )  for which 

nontrivial GCFs (greatest common factors) can be pulled out. 

 

 

Let’s categorize factors in this factorization: 

 

• 3 is a constant factor. 

 

• We will discuss   x
2
 last. 

 

• 
  

x 3( )  is a distinct linear factor. 

 

It is distinct (“different”) in the sense that there are no other x 3( )  

factors, nor are there constant multiples such as 
  
2x 6( ) . 

 

• 2x +1( )  is a distinct linear factor. 

 

• 
  

x + 4( )
2

 is a [nice] power of a linear factor. Because it can be rewritten as 

  
x + 4( ) x + 4( ) , it is an example of repeated linear factors. 

 

• 
  

x
2
+1( )  is a distinct R-irreducible quadratic factor. It is irreducible  

over R, because it has no real zeros (or “roots”); it cannot be nontrivially 

factored and broken down further over R. 

 

• 
  

x
2
+ 4( )

3

 is a [nice] power of an R-irreducible quadratic factor. Because it 

can be rewritten as 
  

x
2
+ 4( ) x

2
+ 4( ) x

2
+ 4( ) , it is an example of repeated 

R-irreducible quadratic factors. 

 

Warning! 

 

•   x
2
 actually represents repeated linear factors, because it can be rewritten as 

 x x . You may want to think of it as 
  

x 0( )
2

. We do not consider   x
2
 to be 

an R-irreducible quadratic, because it has a real zero (or root), namely 0. 
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Why do we care as far as PFDs are concerned? 

 

In Notes 7.14, we showed that 

  

x +11

x
2

3x 4
, or 

  

x +11

x 4( ) x +1( )
, can be decomposed as 

3

x 4

2

x +1
. We could factor the denominator of the original expression as the product 

of two distinct linear factors, so we were able to decompose the expression into a sum of 

two rational expressions with constant numerators and linear denominators. 

 

Note: By “sum,” we really mean “sum or difference.” Remember that a difference may 

be reinterpreted as a sum. For example, 
 
7 4 = 7 + 4( ) . 

 

 

Every proper rational expression of the form 
N x( )

nonconstant D x( )
,  

where both 
 
N x( )  and 

 
D x( )  are polynomials in x with real coefficients,  

has a PFD consisting of a sum of rational expressions (“partial fractions”) whose … 

 

… numerators can be constant or linear, and whose … 

 

… denominators can be linear, R-irreducible quadratics, or powers thereof. 

 

 

Note: The PFD for, say, 

  

1

x
 is simply 

  

1

x
. We don’t really have a “sum” or a 

“decomposition” here. 
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If we have a rational expression that is improper (i.e., the degree of 
 
N x( )  is not less  

than the degree of D x( ) ), then Long Division or some other algebraic work is required 

to express it as either: 

 

• a polynomial, or  

 

• the sum of a polynomial and a proper rational expression. Think: 

 

 
polynomial( ) + proper rational( ) . 

 

We then try to find a PFD for the proper rational expression. 

 

 

See Notes 7.30-7.32 for an Example. 

 

 

In Calculus: These PFDs are used when it is preferable (and permissible!) to apply 

operations (such as integration) term-by-term to a collection of “easy” fractions as 

opposed to a large, unwieldy fraction. The PFD Method for integration (which is the 

reverse of differentiation, the process of finding a derivative) is a key topic of Chapter 9 

in the Calculus II: Math 151 textbook at Mesa. As it turns out, the comments above imply 

that we can integrate any rational expression up to our ability to factor polynomial 

denominators. This is a very powerful statement! 
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PART C: PFD FORMS 

 

Let r x( )  be a proper rational expression of the form 
N x( )

nonconstant D x( )
,  

where both 
 
N x( )  and 

 
D x( )  are polynomials in x with real coefficients. 

 

Consider a complete factorization of D x( )  over R. (See Part B.) 

Each linear or R-irreducible quadratic factor of 
 
D x( )  contributes a term  

(a partial fraction) to the PFD Form. 

 

Let m, a, b, c  R . 

 

Category 1a: Distinct Linear Factors; form mx + b( )  

 

 
mx + b( )  contributes a term of the form: 

 

  

A

mx + b
A R( )  

 

Note: We may use letters other than A. 

 

   
Category 1b: Repeated (or Powers of) Linear Factors; form mx + b( )

n

, n Z
+

 

 

 
mx + b( )

n

 contributes a sum of n terms: 

 

   

A
1

mx + b
+

A
2

mx + b( )
2
+ ... +

A
n

mx + b( )
n

each A
i

R( )  

 

Warning / Think: “Run up to the power.” Also observe that each term gets a 

numerator of constant form. 
 

Technical Note: 
  

x + 2( )  and 
  
3x + 6( )  do not count as distinct linear factors, 

because they are only separated by a constant factor (3), which can be 

factored out of the latter. 
 

Note: You can think of Category 1a as a special case of this where   n = 1. 
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Category 2a: Distinct R-Irreducible Quadratic Factors; form ax
2
+ bx + c( )  

 

  
ax

2
+ bx + c( )  contributes a term of the form: 

 

Ax + B

ax
2
+ bx + c

A, B R( )  

 

Category 2b: Repeated (or Powers of) R-Irreducible Quadratic Factors; 

   
form ax

2
+ bx + c( )

n

, n Z
+

 

 

ax
2
+ bx + c( )

n

 contributes a sum of n terms: 

 

   

A
1
x + B

1

ax
2
+ bx + c

+
A

2
x + B

2

ax
2
+ bx + c( )

2
+ ... +

A
n
x + B

n

ax
2
+ bx + c( )

n
each A

i
, B

i
R( )  

 

Warning / Think: “Run up to the power.” Also observe that each term gets a 

numerator of linear form, though the numerator may turn out to be just a 

constant. 

 

Note: You can think of Category 2a as a special case of this where n = 1. 
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Example 

 

Find the PFD Form for 
1

x
2

x 4( )
2

x
2
+1( )

.  

You do not have to solve for the unknowns. 

 

Solution 

 

  

1

x
2

x 4( )
2

x
2
+1( )

=
A

x
+

B

x
2
+

C

x 4
+

D

x 4( )
2
+

Ex + F

x
2
+1

 

 

A, B, C, D, E, F R( )  

 

Warning: Remember that x
2
 represents repeated linear factors.  

See Notes 7.16. 

 

We “run up to the power” for both the   x
2
 and 

  
x 4( )

2

 factors in the 

denominator. 

 

Because x
2
+1 is an R-irreducible quadratic, we have a linear form, 

 Ex + F , in the corresponding numerator. 

 

 

Technical Note: If a constant aside from ±1 can be factored out of the denominator, you 

can do so immediately. A factor of 3 in the denominator, for example, can be factored out 

of the overall fraction as a 

 

1

3
. This may help, because you do not want to consider 

x + 2( )  and 3x + 6( ) , for example, as distinct linear factors. We prefer complete 

factorizations over R. 
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PART D: STEPS; DISTINCT LINEAR FACTORS 

 

Example 

 

Find the PFD for 

  

x +11

x
2

3x 4
. (Let’s reverse the work from Part A.) 

 

Solution 

 

Step 1: If the expression is improper, use Long Division to obtain the form: 

(polynomial) + (proper rational expression). 

 

Technical Note: Synthetic Division works when the denominator is of 

the form 
   x k, k R . In that case, you wouldn’t need a PFD! 

 

  

x +11

x
2

3x 4
 is proper, so Long Division is unnecessary. 

 

 

Step 2: Factor the denominator (completely) over R. 

 

  

x +11

x
2

3x 4
=

x +11

x 4( ) x +1( )
 

 

 

Step 3: Determine the required PFD Form. 

 

The denominator consists of distinct linear factors, so the PFD form is 

given by: 

 

  

x +11

x 4( ) x +1( )
=

A

x 4
+

B

x +1
 

 

Note: The form 
A

x +1
+

B

x 4
 may also be used. The roles of A and B 

will then be switched in the following work. 
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Step 4: Multiply both sides of the equation by the LCD (least or lowest common 

denominator), the denominator on the left. 

 

These steps can be skipped: 

 

  

x 4( ) x + 1( )
x + 11

x 4( ) x + 1( )
= x 4( ) x + 1( )

A

x 4

+ x 4( ) x + 1( )
B

x + 1

 

 

Instead, we can use the “Who’s missing?” trick for each term on the right 

side: 

 

      
  
x +11= A x +1( ) + B x 4( )  

 

This is called the basic equation. 

 

 

Step 5: Solve the basic equation for the unknowns, A and B. 

 

Technical Note: A and B are unique, given the PFD Form. The PFD will be 

unique up to a reordering of the terms and manipulations of constant factors. 

 

Method 1 (“Plug In”): Plug convenient values for x into the basic equation. 

 

For the correct values of A and B, the basic equation holds true for all 

real values of x, even those values excluded from the domain of the 

original expression. This can be proven in Calculus. 

 

We would like to choose values for x that will make the “coefficient” 

of A or B equal to 0. 

 

Plug in 
  
x = 1: 

 

    

x +11= A x +1( ) + B x 4( )

1+11= A 1+1( )
0

+ B 1 4( )
10 = 5B

B = 2
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Plug in   x = 4: 

 

x +11= A x +1( ) + B x 4( )

4 +11= A 4 +1( ) + B 4 4( )
0

15 = 5A

A = 3

 

 

Note: Other values for x may be chosen, but you run the risk of having 

to solve a more complicated system of linear equations. 

 

 

Method 2 (“Match Coefficients”): Write the right-hand side of the basic 

equation in standard form, and match (i.e., equate) corresponding 

coefficients. 

 

  

x +11= A x +1( ) + B x 4( )
x +11= Ax + A+ Bx 4B

1( ) x + 11( ) = A+ B( ) x + A 4B( )
 

 

The “(1)” coefficient and the parentheses on the left side are optional, 

but they may help you clearly identify coefficients. 

 

Given that both sides are written in standard form, 

the left-hand side is equivalent to the right-hand side   

every corresponding pair of coefficients of like terms are equal.  

 

We must solve the system: 

 

  

A+ B = 1

A 4B = 11
 

 

See Sections 7.1 and 7.2 for a review of how to solve systems 

of two linear equations in two unknowns. 
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We could solve the first equation for A and use the Substitution 

Method: 

 

A+ B = 1 A = 1 B

A 4B = 11 1 B( ) 4B = 11

1 5B = 11

10 = 5B

B = 2

 

Then, 

 

    

A = 1 B

A = 1 2( )
A = 3

 

 

Alternately, we could multiply both sides of the first equation by 
 

1 

(so that we have opposite coefficients for one of the unknowns) and 

use the Addition / Elimination Method, in which we “add equations” 

(really, add equals to equals) to obtain a new equation: 

 

  

  

A+ B = 1 1( )
A 4B = 11

 

 

    

A B = 1

A 4B = 11

5B = 10

B = 2

 

 

Now, let’s use the original first equation to find A: 

 

  

A+ B = 1

A+ 2( ) = 1

A = 3
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Note: We may want to combine Methods 1 and 2 (“Plug In” and “Match 

Coefficients”) when solving more complicated problems. Method 1 is 

usually easier to use, so we often use it first to find as many of the unknowns 

as we can with ease. (Remember that any real value for x may be plugged 

into the basic equation.) We can then plug values of unknowns we have 

found into the basic equation and use Method 2 to find the values of the 

remaining unknowns. Method 2 tends to be more directly useful as we 

discuss more complicated cases. 

 

 

Step 6: Write out the PFD. 

 

  

x +11

x
2

3x 4
  or  

x +11

x 4( ) x +1( )
=

A

x 4
+

B

x +1

=
3

x 4
+

2

x +1

=
3

x 4

2

x +1
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PART E: REPEATED (OR POWERS OF) LINEAR FACTORS 

 

Example 

 

Find the PFD for 

  

x
2

x + 2( )
3

. 

 

Solution 

 

Step 1: The expression is proper, because 2, the degree of 
 
N x( ) , is less than 

3, the degree of D x( ) . 

 

Warning: Imagine that 
 
N x( )  and 

 
D x( )  have been written out in 

standard form before determining the degrees. 

 

 

Step 2: Factor the denominator over R. (Done!) 

 

 

Step 3: Determine the required PFD Form. 

 

The denominator consists of repeated linear factors, so the PFD Form 

is given by: 

 

  

x
2

x + 2( )
3
=

A

x + 2
+

B

x + 2( )
2
+

C

x + 2( )
3

 

 

We must “run up to the power.” 

 

 

Step 4: Multiply both sides of the equation by the LCD, 
  

x + 2( )
3

, to obtain 

the basic equation. 

 

  
x

2
= A x + 2( )

2

+ B x + 2( ) + C  
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Step 5: Solve the basic equation for the unknowns, A, B, and C. 

 

Plug in 
  
x = 2 : 

 

    

x
2
= A x + 2( )

2

+ B x + 2( ) + C

2( )
2

= A 2 + 2( )
2

0

+ B 2 + 2( )
0

+ C

C = 4

 

 

Updated basic equation; we now know   C = 4 : 

 

      x
2
= A x + 2( )

2

+ B x + 2( ) + 4  

 

We can use the “Match Coefficients” Method, or we can plug 

in a couple of other real values for x, as follows: 

 

Plug in x = 0 , say: 

 

    

  

x
2
= A x + 2( )

2

+ B x + 2( ) + 4

0( )
2

= A 0 + 2( )
2

+ B 0 + 2( ) + 4

0 = 4A+ 2B + 4

Let's divide both sides by 2

and switch sides.

2A+ B + 2 = 0

2A+ B = 2

 

 

Plug in 
  
x = 1, say: 

 

 

  

x
2
= A x + 2( )

2

+ B x + 2( ) + 4

1( )
2

= A 1+ 2( )
2

+ B 1+ 2( ) + 4

1= A+ B + 4

3= A+ B

A+ B = 3
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We must solve the system: 

 

  

2A+ B = 2

A+ B = 3
 

 

After some work, we find that A = 1  and B = 4 . 

 

 

Step 6: Write out the PFD. 

 

x
2

x + 2( )
3
=

A

x + 2
+

B

x + 2( )
2
+

C

x + 2( )
3

=
1

x + 2
+

4

x + 2( )
2
+

4

x + 2( )
3

=
1

x + 2

4

x + 2( )
2
+

4

x + 2( )
3
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PART F: DISTINCT R-IRREDUCIBLE QUADRATIC FACTORS 

 

Example 

 

  

1

x
2
+1

 can’t be decomposed further using a PFD over R, because the denominator 

is, itself, an irreducible quadratic over R (i.e., it has no real roots). 

 

Technical Note: There is such a thing as a PFD over C. 

 

 

Example 

 

Find the PFD for 

  

2x
4

2x
3
+10x

2
3x + 9

2x
3
+ 3x

. 

 

Solution 

 

Step 1: The expression is improper, because 4, the degree of 
 
N x( ) , is not 

less than 3, the degree of D x( ) . 

 

After performing the Long Division (left up to you!), we obtain: 

 

  

2x
4

2x
3
+10x

2
3x + 9

2x
3
+ 3x

= x 1+
7x

2
+ 9

2x
3
+ 3x

 

 

 

Step 2: Factor the denominator over R. 

 

Warning: We will ignore the polynomial part,   x 1, for now, but 

don’t forget about it when giving your final answer. 

 

  

7x
2
+ 9

2x
3
+ 3x

=
7x

2
+ 9

x 2x
2
+ 3( )
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Step 3: Determine the required PFD Form. 

 

        

  

7x
2
+ 9

x 2x
2
+ 3( )

=
A

x
+

Bx + C

2x
2
+ 3

; remember   x 1 

 

You should remind yourself of the x 1 polynomial part here, 

because you will refer to this step when you write out the PFD at the 

end. 

 

Step 4: Multiply both sides of the equation by the LCD, x 2x
2
+ 3( ) , to 

obtain the basic equation. 

 

   7x
2
+ 9 = A 2x

2
+ 3( ) + Bx + C( ) x  

 

Step 5: Solve the basic equation for the unknowns, A, B, and C. 

 

Plug in   x = 0 : 

 

    

7x
2
+ 9 = A 2x

2
+ 3( ) + Bx + C( ) x

7 0( )
2

+ 9 = A 2 0( )
2

+ 3 + B 0( ) + C 0( )
0

9 = 3A

A = 3

 

 

Updated basic equation; we now know A = 3: 

 

   
  
7x

2
+ 9 = 3 2x

2
+ 3( ) + Bx + C( ) x  

 

Let’s use the “Match Coefficients” Method. 

 

  

7x
2
+ 0x + 9 = 6x

2
+ 9 + Bx

2
+ Cx

7( ) x
2
+ 0( ) x + 9( ) = 6 + B( ) x

2
+ C( ) x + 9( )

 

 

Tip: Inserting the 
  
+ 0x  on the left side may be helpful. 

 

Note: The “9”s better match up, or else we’re in trouble! 
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Match the   x
2
 coefficients:  

 

    

7 = 6 + B

B = 1
 

 

Match the x  coefficients: 

 

    

0 = C

C = 0
 

 

 

Step 6: Write out the PFD. 

 

Warning: Don’t forget the polynomial part,   x 1. That’s why we had 

that reminder back in Step 3. 

 

  

2x
4

2x
3
+10x

2
3x + 9

2x
3
+ 3x

= x 1 +
A

x
+

Bx + C

2x
2
+ 3

= x 1 +
3

x
+

1x + 0

2x
2
+ 3

= x 1 +
3

x
+

x

2x
2
+ 3
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PART G: REPEATED (OR POWERS OF) R-IRREDUCIBLE QUADRATIC FACTORS 

 

Example 

 

Find the PFD for 
2x

3
x

2
+ 2x + 2

x
2
+1( )

2
. 

 

Solution 

 

Step 1: The expression is proper, because 3, the degree of 
 
N x( ) , is less than 

4, the degree of 
 
D x( ) . 

 

Warning: Imagine that N x( )  and D x( )  have been written out in 

standard form before determining their degrees. 

 

 

Step 2: Factor the denominator over R. (Done!) 

 

Observe that 
  

x
2
+1( )  has no real zeros. 

 

 

Step 3: Determine the required PFD Form. 

 

  

2x
3

x
2
+ 2x + 2

x
2
+1( )

2
=

Ax + B

x
2
+1

+
Cx + D

x
2
+1( )

2
 

 

  We must “run up to the power.” 

 

 

Step 4: Multiply both sides of the equation by the LCD, 
  

x
2
+1( )

2

, to obtain 

the basic equation. 

 

  
2x

3
x

2
+ 2x + 2 = Ax + B( ) x

2
+1( ) + Cx + D( )  
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Step 5: Solve the basic equation for the unknowns, A, B, C, and D. 

 

Let’s use the “Match Coefficients” Method immediately. 

 

  

2x
3

1x
2
+ 2x + 2 = Ax

3
+ Ax + Bx

2
+ B + Cx + D

2( ) x
3
+ 1( ) x

2
+ 2( ) x + 2( ) = A( ) x

3
+ B( ) x

2
+ A+ C( ) x + B + D( )

 

 

Note: If you use the optional parentheses on the left side, 

remember to separate your terms with “+” signs in order to 

avoid confusion.  

 

Note: You may want to mark off terms as you collect like terms 

on the right side. 

 

By matching the   x
3
 coefficients and the   x

2
 coefficients, we 

immediately obtain:  

 

A = 2

B = 1
 

 

Match the  x  coefficients, and use the previous info: 

 

    

A+ C = 2

2 + C = 2

C = 0

 

 

Match the constant terms, and use the previous info: 

 

  

    

B + D = 2

1+ D = 2

D = 3

 

 

We have solved the system: 

 

 

  

A = 2

B = 1

A+ C = 2

B + D = 2
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Step 6: Write out the PFD. 

 

2x
3

x
2
+ 2x + 2

x
2
+1( )

2
=

Ax + B

x
2
+1

+
Cx + D

x
2
+1( )

2

=
2x 1

x
2
+1

+
0x + 3

x
2
+1( )

2

=
2x 1

x
2
+1

+
3

x
2
+1( )

2

 

 

 

Historical Note on p.536: John Bernoulli introduced the methods of this section. 
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SECTION 7.5: GRAPHING INEQUALITIES, and
SECTION 7.6: LINEAR PROGRAMMING

In Example 2 on p.542, the one-variable linear inequalities   x > −2  and   y ≤ 3  are graphed in the
xy-plane.

In Example 3 on p.542, the two-variable linear inequality   x − y < 2  is graphed in the xy-plane.
Two methods:

Method 1: Test Point Method

Step 1: Graph the boundary line, which separates the xy-plane into two half-
planes.

• Replace the inequality symbol with “=” to obtain the equation of the
boundary line.

• To figure out how to graph the line,

§ Put the equation in slope-intercept form:  y = mx + b , or

§ Plot the intercepts. (See Section 1.3: Notes 1.16-1.17.)

•
If the inequality had Then graph the line as

≤   or  ≥
(weak inequality)

a solid line
(We include the line in the graph.)

<  or  >
(strict inequality)

a dashed line
(We exclude the line.)

Step 2: Decide which half-plane to shade.

• Pick a test point not on the boundary line. 
 
0,0( )  is usually the best choice

if it doesn't lie on the line.

• If the coordinates of the test point make the inequality true, shade the
half-plane containing the test point (i.e., shade “towards” the test point).
Otherwise, shade the other half-plane (i.e., shade “away from” the test
point).
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Method 2: "Solve for y" Method

Step 1: Put the inequality in the form

  

y

inequality

symbol

< , ≤ , > , or ≥

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

mx + b

Step 2: Graph the boundary line, whose equation is  y = mx + b .
(The box from Method 1 on solid vs. dashed applies here, too.)

Step 3: If the inequality from Step 1 is of the form:

   

y > mx + b

y ≥ mx + b

⎫
⎬
⎭

favor "high" points, so shade above the boundary line

   

y < mx + b

y ≤ mx + b

⎫
⎬
⎭

favor "low" points, so shade below the boundary line

In Example 1 on p.541, the nonlinear inequality   y ≥ x2 −1 is graphed in the xy-plane.

The graph of   y = x2 −1  divides the xy-plane into two regions. To be safe, because the
inequality is nonlinear, we use a test point in each of the two regions to see if none, one, or both
of the regions should be shaded. Notice that the inequality favors “high” points.

Warning: If we graph the inequality 
  
y ≥

1

x
, the graphs of 

  
y =

1

x
 and   x = 0  are used to

separate the xy-plane into regions. Observe that 
  

1

x
 is undefined when   x = 0 .
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Systems of inequalities are discussed on pp.543-547. As with systems of equations, we want to
locate all points that represent solutions to all the inequalities in the system. In other words, we
want to locate the points where all the graphs of the inequalities intersect (or “overlap”).

Linear programming is the key application of systems of linear inequalities.

Let's say we want to produce guns and/or butter. (In a way, this was the issue facing
President Lyndon Johnson when he was fighting both the Vietnam War and the War on
Poverty.) Given limited budget and/or physical constraints, what are our production
options? That is, what combinations of guns and butter can we produce? The possible
combinations make up the feasible region shaded below; this feasible region represents
the solution set of a system of linear inequalities (corresponding to the constraints).

The inequalities must be weak inequalities; i.e., they must contain  ≤   or  ≥   symbols, as
opposed to  <  or  >  symbols.

Notice that we have the nonnegativity constraints x > 0 and y > 0.

What is the "best" production strategy? We first need an objective function that assigns a
value to each of the points in the feasible region; these values are a measure of
"goodness" or "badness," such as profit or cost. We want the point in the feasible region
that has the maximum or minimum such value. This point represents our optimal solution
– that is, our best production strategy. If everything's linear (the objective function and
the constraints), then the optimal solution will lie at a corner point (or take up some
boundary) of the feasible region. These ideas extend to higher dimensions! See Notes
7.40.
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Example

Objective function 
  
z = f x, y( )

  z = 4x + 3y , where:

z represents profit that we want to maximize
x and y represent quantities of two products

Constraints

  x ≥ 0
  y ≥ 0

  x + y ≤ 5 (Total production cannot exceed 5 pounds, for example.)

Feasible region

The optimal solution must occur at a corner point.
That corner point turns out to be 

 
5,0( ) .
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How has linear programming been used?

• In scheduling, transportation, and resource allocation applications during
World War II

• In the famous Berlin Airlift (1948-1949) during the Soviet blockade of Berlin

• In the 1980s, American Airlines cut costs 10% using linear programming
techniques.

• In pricing and supply management

• It’s the basis for 10% to 25% of all scientific computation today.

Oh, and that urban legend about that brilliant graduate student who solved two problems
he saw on the blackboard, thinking that they were homework problems (they were
actually as-yet unsolved research problems) – that's true. That student was George
Dantzig, who invented the simplex method in 1947. It is the key algorithm used in linear
programming. The simplex method allows us to efficiently travel along the edges of a
multidimensional polytope bounding the feasible region.

See Larson, p.554 to see a photo of Dantzig, who died in May 2005.

Sources:
Larson, “linear programming” from Encyclopedia Britannica,
Stanford Report (May 25, 2005) link:

http://news-service.stanford.edu/news/2005/may25/dantzigobit-052505.html
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