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CHAPTER 8: MATRICES and DETERMINANTS 
 

 

The material in this chapter will be covered in your Linear Algebra class (Math 254 at Mesa). 

 

 

SECTION 8.1: MATRICES and SYSTEMS OF EQUATIONS 

 

 

PART A: MATRICES 

 

A matrix is basically an organized box (or “array”) of numbers (or other expressions). 

In this chapter, we will typically assume that our matrices contain only numbers. 

 

 

Example 

 

Here is a matrix of size  2 3  (“2 by 3”), because it has 2 rows and 3 columns: 

 

 

1 0 2

0 1 5
 

 

The matrix consists of 6 entries or elements.  

 

 

In general, an  m n  matrix has m rows and n columns and has  mn  entries. 

 

 

Example 

 

Here is a matrix of size  2 2  (an order 2 square matrix): 

 

  

4 1

3 2
 

 

The boldfaced entries lie on the main diagonal of the matrix.  

(The other diagonal is the skew diagonal.) 
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PART B: THE AUGMENTED MATRIX FOR A SYSTEM OF LINEAR EQUATIONS 

 

Example 

 

Write the augmented matrix for the system: 

  

3x + 2y + z = 0

2x z = 3
 

 

Solution 

 

Preliminaries: 

 

Make sure that the equations are in (what we refer to now as) 

standard form, meaning that … 

 

• All of the variable terms are on the left side (with x, y, and z 

ordered alphabetically), and  

 

• There is only one constant term, and it is on the right side. 

 

Line up like terms vertically. 

 

Here, we will rewrite the system as follows: 

 

  

3x + 2y + z = 0

2x z = 3
 

 

(Optional) Insert “1”s and “0”s to clarify coefficients. 

 

  

3x + 2y +1z = 0

2x + 0y 1z = 3
 

 

Warning: Although this step is not necessary, people often 

mistake the coefficients on the z terms for “0”s. 

 

 

 

 

 

 



(Section 8.1: Matrices and Determinants)  8.03 

 

Write the augmented matrix: 

 

       Coefficients of        Right 

        x          y         z        sides 

 

3 2 1

2 0 1

0

3
 

 

    Coefficient matrix     Right-hand 

                                       side (RHS) 

Augmented matrix

 

 

We may refer to the first three columns as the x-column, the  

y-column, and the z-column of the coefficient matrix. 

 

Warning: If you do not insert “1”s and “0”s, you may want to read the 

equations and fill out the matrix row by row in order to minimize the 

chance of errors. Otherwise, it may be faster to fill it out column by 

column. 

 

The augmented matrix is an efficient representation of a system of 

linear equations, although the names of the variables are hidden. 
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PART C: ELEMENTARY ROW OPERATIONS (EROs) 

 

Recall from Algebra I that equivalent equations have the same solution set. 

 

Example 

 

Solve: 2x 1= 5 

 

  

2x 1= 5

2x = 6

x = 3 Solution set is 3{ }.

 

 

To solve the first equation, we write a sequence of equivalent equations until 

we arrive at an equation whose solution set is obvious. 

 

The steps of adding 1 to both sides of the first equation and of dividing both 

sides of the second equation by 2 are like “legal chess moves” that allowed 

us to maintain equivalence (i.e., to preserve the solution set). 

 

Similarly, equivalent systems have the same solution set. 

 

Elementary Row Operations (EROs) represent the legal moves that allow us to write a 

sequence of row-equivalent matrices (corresponding to equivalent systems) until we 

obtain one whose corresponding solution set is easy to find. There are three types of 

EROs: 
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1) Row Reordering 

 

Example 

 

Consider the system: 

  

3x y = 1

x + y = 4
 

 

If we switch (i.e., interchange) the two equations, then the solution set 

is not disturbed: 

 

  

x + y = 4

3x y = 1
 

 

This suggests that, when we solve a system using augmented matrices, 

… 

 

We can switch any two rows. 

 

Before: 

 

  

R
1

R
2

3 1

1 1

1

4
 

 

Here, we switch rows R
1
 and R

2
, which we denote 

by: 
  
R

1
R

2
 

 

After: 

 

   

  

new R
1

new R
2

1 1

3 1

4

1
 

 

In general, we can reorder the rows of an augmented matrix 

in any order. 

 

Warning: Do not reorder columns; in the coefficient matrix,  

that will change the order of the corresponding variables. 
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2) Row Rescaling 

 

Example 

 

Consider the system:  

  

1

2
x +

1

2
y = 3

y = 4

 

 

If we multiply “through” both sides of the first equation by 2, then we 

obtain an equivalent equation and, overall, an equivalent system: 

 

  

x + y = 6

y = 4
 

 

This suggests that, when we solve a system using augmented matrices, 

… 

 

We can multiply (or divide) “through” a row by any 

nonzero constant. 

 

 

Before: 

 

R
1

R
2

1 / 2 1 / 2

0 1

3

4
 

 

Here, we multiply through 
  
R

1
 by 2, which we 

denote by: R
1

2 R
1
, or new R

1
( ) 2 old R

1
( )  

 

After: 

 

   

  

new R
1

       R
2

1 1

0 1

6

4
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3) Row Replacement 

 

(This is perhaps poorly named, since ERO types 1 and 2 may also be viewed 

as “row replacements” in a literal sense.) 

 

When we solve a system using augmented matrices, … 

 

We can add a multiple of one row to another row. 

 

Technical Note: This combines ideas from the Row Rescaling ERO 

and the Addition Method from Chapter 7. 

 

Example 

 

Consider the system:  

  

x + 3y = 3

2x + 5y = 16
 

 

Before:  

 

R
1

R
2

1 3

2 5

3

16
 

 

Note: We will sometimes boldface items for purposes of clarity. 

 

It turns out that we want to add twice the first row to the second 

row, because we want to replace the “
 

2 ” with a “0.”  

 

We denote this by: 

 

  
R

2
R

2
+ 2 R

1
, or 

  
new R

2
( ) old R

2
( ) + 2 R

1
 

 

old 
  
R

2
 2 5  16 

  
+2 R

1
 2 6  6 

new 
  
R

2
 0 11  22 
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Warning: It is highly advised that you write out the table! 

People often rush through this step and make mechanical errors. 

 

Warning: Although we can also subtract a multiple of one row 

from another row, we generally prefer to add, instead, even if 

that means that we multiply “through” a row by a negative 

number. Errors are common when people subtract. 

 

After: 

 

   
  old R

1

new R
2

1 3

0 11

3

22
 

 

Note: In principle, you could replace the old R
1
 with the 

rescaled version, but it turns out that we like having that “1” in 

the upper left hand corner! 

 

If matrix B is obtained from matrix A after applying one or more EROs, then we 

call A and B row-equivalent matrices, and we write   A B . 

 

Example 

 

1 2

7 8

3

9

7 8

1 2

9

3
 

 

Row-equivalent augmented matrices correspond to equivalent systems, assuming 

that the underlying variables (corresponding to the columns of the coefficient 

matrix) stay the same and are in the same order. 
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PART D: GAUSSIAN ELIMINATION (WITH BACK-SUBSTITUTION) 

 

This is a method for solving systems of linear equations. 

 

Historical Note: This method was popularized by the great mathematician Carl Gauss, 

but the Chinese were using it as early as 200 BC. 

 

Steps 

 

Given a square system (i.e., a system of n linear equations in n unknowns for some 

  n Z
+
; we will consider other cases later) … 

 

1) Write the augmented matrix. 

 

2) Use EROs to write a sequence of row-equivalent matrices until you get one in 

the form: 

 

 

 

If we begin with a square system, then all of the coefficient matrices will be 

square.  

 

We want “1”s along the main diagonal and “0”s all below.  

The other entries are “wild cards” that can potentially be any real numbers. 

 

This is the form that we are aiming for. Think of this as “checkmate” or  

“the top of the jigsaw puzzle box” or “the TARGET” (like in a trig ID).  

 

Warning: As you perform EROs and this form crystallizes and emerges,  

you usually want to avoid “undoing” the good work you have already done.  

For example, if you get a “1” in the upper left corner, you usually want to 

preserve it. For this reason, it is often a good strategy to “correct” the 

columns from left to right (that is, from the leftmost column to the 

rightmost column) in the coefficient matrix. Different strategies may work 

better under different circumstances. 
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For now, assume that we have succeeded in obtaining this form; this 

means that the system has exactly one solution. 

 

What if it is impossible for us to obtain this form? We shall discuss this 

matter later (starting with Notes 8.21).  

 

 

3) Write the new system, complete with variables. 

 

This system will be equivalent to the given system, meaning that they share 

the same solution set. The new system should be easy to solve if you … 

 

 

4) Use back-substitution to find the values of the unknowns. 

 

We will discuss this later. 

 

 

5) Write the solution as an ordered n-tuple (pair, triple, etc.). 

 

 

6) Check the solution in the given system. (Optional) 

 

Warning: This check will not capture other solutions if there are, in fact, 

infinitely many solutions. 

 

Technical Note: This method actually works with complex numbers in general. 

 

Warning: You may want to quickly check each of your steps before proceeding. A single 

mistake can have massive consequences that are difficult to correct. 
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Example 

 

Solve the system: 

  

4x y = 13

x 2y = 5
 

 

Solution 

 

Step 1) Write the augmented matrix. 

 

You may first want to insert “1”s and “0”s where appropriate. 

 

  

4x 1y = 13

1x 2y = 5
 

 

   

R
1

R
2

4 1

1 2

13

5
 

 

Note: It’s up to you if you want to write the “
  
R

1
” and the “

  
R

2
.” 

 

Step 2) Use EROs until we obtain the desired form: 

 

1 ?

0 1

?

?
 

 

Note: There may be different “good” ways to achieve our goal.  

 

We want a “1” to replace the “4” in the upper left. 

Dividing through R
1
 by 4 will do it, but we will then end up with 

fractions. Sometimes, we can’t avoid fractions. Here, we can. 

 

Instead, let’s switch the rows. 

 

  
R

1
R

2
 

 

Warning: You should keep a record of your EROs. This will reduce 

eyestrain and frustration if you want to check your work! 

 

   

R
1

R
2

1 2

4 1

5

13
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We now want a “0” to replace the “4” in the bottom left. 

Remember, we generally want to “correct” columns from left to right, 

so we will attack the position containing the 
 

1 later. 

 

We cannot multiply through a row by 0. 

 

Instead, we will use a row replacement ERO that exploits the “1” in 

the upper left to “kill off” the “4.” This really represents the 

elimination of the x term in what is now the second equation in our 

system. 

 

  
new R

2
( ) old R

2
( ) + 4( ) R

1
 

 

The notation above is really unnecessary if you show the work below: 

 

old 
  
R

2
 4 1  13 

  
+ 4( ) R

1
 4 8  20 

new 
  
R

2
 0 7  7 

 

R
1

R
2

1 2

0 7

5

7
 

 

We want a “1” to replace the “7.” 

We will divide through 
  
R

2
 by 7, or, equivalently, we will multiply 

through 
  
R

2
 by 

 

1

7
:  

R
2

1

7
R

2
, or 

 

   

   

R
1

R
2

1 2

0 7

5

7 ÷7
 

 

  

R
1

R
2

1 2

0 1

5

1
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We now have our desired form. 

 

Technical Note: What’s best for computation by hand may not be best 

for computer algorithms that attempt to maximize precision and 

accuracy. For example, the strategy of partial pivoting would have 

kept the “4” in the upper left position of the original matrix and would 

have used it to eliminate the “1” below. 

 

Note: Some books remove the requirement that the entries along the 

main diagonal all have to be “1”s. However, when we refer to 

Gaussian Elimination, we will require that they all be “1”s.   

 

 

Step 3) Write the new system. 

 

You may want to write down the variables on top of their 

corresponding columns. 

 

  

  x y

1 2

0 1

5

1

 

 

  

x 2y = 5

y = 1
 

 

This is called an upper triangular system, which is very easy to solve 

if we … 
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Step 4) Use back-substitution. 

 

We start at the bottom, where we immediately find that 
  y = 1 . 

 

We then work our way up the system, plugging in values for 

unknowns along the way whenever we know them. 

 

    

x 2y = 5

x 2 1( ) = 5

x + 2 = 5

x = 3

 

 

 

Step 5) Write the solution. 

 

The solution set is: 
 

3, 1( ){ } . 

 

Books are often content with omitting the { }  brace symbols. 

Ask your instructor, though. 

 

Warning: Observe that the order of the coordinates is the reverse of 

the order in which we found them in the back-substitution procedure. 

 

 

Step 6) Check. (Optional) 

 

Given system: 

  

4x y = 13

x 2y = 5
 

 

4 3( ) 1( ) = 13

3( ) 2 1( ) = 5

 

 

 

13= 13

5 = 5
 

 

Our solution checks out. 
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Example (#62 on p.556) 

 

Solve the system: 

2x + 2y z = 2

x 3y + z = 28

x + y = 14

 

 

Solution 

 

Step 1) Write the augmented matrix. 

 

You may first want to insert “1”s and “0”s where appropriate. 

 

  

2x + 2y 1z = 2

1x 3y + 1z = 28

1x + 1y + 0z = 14

 

 

   

R
1

R
2

R
3

2 2 1

1 3 1

1 1 0

2

28

14

 

 

Step 2) Use EROs until we obtain the desired form: 

 

1 ? ?

0 1 ?

0 0 1

?

?

?

 

 

We want a “1” to replace the “2” in the upper left corner. 

Dividing through 
  
R

1
 by 2 would do it, but we would then end up  

with a fraction. 

 

Instead, let’s switch the first two rows. 

 

  
R

1
R

2
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R
1

R
2

R
3

1 3 1

2 2 1

1 1 0

28

2

14

 

 

We now want to “eliminate down” the first column by using the “1” 

in the upper left corner to “kill off” the boldfaced entries and turn 

them into “0”s. 

 

Warning: Performing more than one ERO before writing down a new 

matrix often risks mechanical errors. However, when eliminating 

down a column, we can usually perform several row replacement 

EROs without confusion before writing a new matrix. (The same is 

true of multiple row rescalings and of row reorderings, which can 

represent multiple row interchanges.) Mixing ERO types before 

writing a new matrix is probably a bad idea, though! 

 

old R
2
 2 2 1  2 

  
+ 2( ) R

1
 2 6 2  56 

new R
2
 0 8 3  58 

 

old 
  
R

3
 1 1 0  14 

  
+R

1
 1 3 1  28 

new 
  
R

3
 0 2 1  14 

 

Now, write down the new matrix: 

 

  

R
1

R
2

R
3

1 3 1

0 8 3

0 2 1

28

58

14

 

 

The first column has been “corrected.” From a strategic perspective, 

we may now think of the first row and the first column (in blue) as 

“locked in.” (EROs that change the entries therein are not necessarily 

“wrong,” but you may be in danger of being taken further away from 

the desired form.) 
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We will now focus on the second column. We want:  

 

  

1 3 1

0 1 ?

0 0 ?

28

?

?

 

 

Here is our current matrix: 

 

   

R
1

R
2

R
3

1 3 1

0 8 3

0 2 1

28

58

14

 

 

If we use the “
 

2 ” to kill off the “8,” we can avoid fractions for the 

time being. Let’s first switch 
  
R

2
 and 

  
R

3
 so that we don’t get confused 

when we do this. (We’re used to eliminating down a column.) 

 

Technical Note: The computer-based strategy of partial pivoting 

would use the “8” to kill off the “
 

2 ,” since the “8” is larger in 

absolute value. 

 

  
R

2
R

3
 

 

R
1

R
2

R
3

1 3 1

0 2 1

0 8 3

28

14

58

 

 

Now, we will use a row replacement ERO to eliminate the “8.” 

 

old 
  
R

3
 0 8 3  58 

+4 R
2
 0 8 4  56 

new 
  
R

3
 0 0 1  2 

 

Warning: Don’t ignore the “0”s on the left; otherwise, you may get 

confused. 
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Now, write down the new matrix: 

 

   

R
1

R
2

R
3

1 3 1

0 2 1

0 0 1

28

14

2

 

 

Once we get a “1” where the “
 

2 ” is, we’ll have our desired form. 

We are fortunate that we already have a “1” at the bottom of the third 

column, so we won’t have to “correct” it. 

 

We will divide through R
2
 by 

 
2 , or, equivalently, we will multiply 

through 
  
R

2
 by 

 

1

2
. 

  

R
2

1

2
R

2
, or 

 

   

R
1

R
2

R
3

1 3 1

0 2 1

0 0 1

28

14

2

÷ 2( )  

 

We finally obtain a matrix in our desired form: 

 

    

  

R
1

R
2

R
3

1 3 1

0 1 1 / 2

0 0 1

28

7

2
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Step 3) Write the new system. 

 

  

  x y     z

1 3 1

0 1 1 / 2

0 0 1

28

7

2

 

 

x 3y + z = 28

y
1

2
z = 7

z = 2

 

 

 

Step 4) Use back-substitution. 

 

We immediately have:   z = 2  

 

Use   z = 2  in the second equation: 

 

    

y
1

2
z = 7

y
1

2
2( ) = 7

y 1= 7

y = 8

 

 

Use 
  
y = 8  and   z = 2  in the first equation: 

 

    

x 3y+ z = 28

x 3 8( )+ 2( ) = 28

x 24 + 2 = 28

x 22 = 28

x = 6
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Step 5) Write the solution. 

 

The solution set is: 
 

6, 8, 2( ){ } . 

 

Warning: Remember that the order of the coordinates is the reverse of 

the order in which we found them in the back-substitution procedure. 

 

 

Step 6) Check. (Optional) 

 

Given system: 

  

2x + 2y z = 2

x 3y + z = 28

x + y = 14

 

 

 

2 6( ) + 2 8( ) 2( ) = 2

6( ) 3 8( ) + 2( ) = 28

6( ) + 8( ) = 14

 

 

 

2 = 2

28 = 28

14 = 14

 

 

Our solution checks out. 
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PART E: WHEN DOES A SYSTEM HAVE NO SOLUTION? 

 

 

If we ever get a row of the form: 

 

  
0 0 0 non-0 constant( ) , 

 

then STOP! We know at this point that the solution set is . 

 

 

Example 

 

Solve the system: 

  

x + y = 1

x + y = 4
 

 

Solution 

 

The augmented matrix is: 

 

R
1

R
2

1 1

1 1

1

4
 

 

We can quickly subtract 
  
R

1
 from 

  
R

2
. We then obtain: 

 

  

R
1

R
2

1 1

0 0

1

3
 

 

The new R
2
 implies that the solution set is . 

 

Comments: This is because 
  
R

2
 corresponds to the equation  0 = 3 , which 

cannot hold true for any pair 
  

x, y( ) . 
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If we get a row of all “0”s, such as: 

 

0 0 0 0 , 

 

then what does that imply? The story is more complicated here. 

 

Example 

 

Solve the system: 
x + y = 4

x + y = 4
 

 

Solution 

 

The augmented matrix is: 

 

R
1

R
2

1 1

1 1

4

4
 

 

We can quickly subtract R
1
 from R

2
. We then obtain: 

 

R
1

R
2

1 1

0 0

4

0
 

 

The corresponding system is then: 

 

  

x + y = 4

0 = 0
 

 

The equation  0 = 0  is pretty easy to satisfy. All ordered pairs x, y( )  

satisfy it. In principle, we could delete this equation from the system. 

However, we tend not to delete rows in an augmented matrix, even if 

they consist of nothing but “0”s. The idea of changing the size of a 

matrix creeps us out. 
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The solution set is: 

 

  
x, y( ) x + y = 4{ }  

 

The system has infinitely many solutions; they correspond to all of the 

points on the line x + y = 4 . 

 

 

However, a row of all “0”s does not automatically imply that the corresponding 

system has infinitely many solutions. 

 

Example 

 

Consider the augmented matrix: 

 

  

R
1

R
2

0 0

0 0

1

0
 

 

Because of 
  
R

1
, the corresponding system actually has no solution. 

 

See Notes 7.12 for a similar example. 

 

 

The augmented matrices we have seen in this Part are not row equivalent to any 

matrix of the form  

 

  

R
1

R
2

1 ?

0 1

?

?
. 

 

There was no way to get that desired form using EROs. 

 

What form do we aim for, then? 
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PART F: ROW-ECHELON FORM FOR A MATRIX 

 

If it is impossible for us to obtain the form 

 

 

 

(maybe because our coefficient matrix isn’t even square), then what do we aim for? 

We aim for row-echelon form; in fact, the above form is a special case of row-echelon 

form. 

 

 

Properties of a Matrix in Row-Echelon Form 

 

1) If there are any “all-0” rows, then they must be at the bottom of the matrix. 

 

Aside from these “all-0” rows, 

 

2) Every row must have a “1” (called a “leading 1”) as its leftmost non-0 entry. 

 

3) The “leading 1”s must “flow down and to the right.” 

 

More precisely: The “leading 1” of a row must be in a column to the right of 

the “leading 1”s of all higher rows. 

 

 

Example 

 

The matrix below is in Row-Echelon Form: 

 

  

1 3 0 7 4

0 0 0 1 9

0 0 0 0 1

0 0 0 0 0

1

2

3

0

 

 

The “leading 1”s are boldfaced.  

The “1” in the upper right corner is not a “leading 1.” 
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PART G: REDUCED ROW-ECHELON (RRE) FORM FOR A MATRIX 

 

This is a special case of Row-Echelon Form. 

 

Properties of a Matrix in Reduced Row-Echelon (RRE) Form 

 

1-3) It is in Row-Echelon form. (See Part F.) 

 

4) Each “leading 1” has all “0”s elsewhere in its column. 

 

 

Property 4) leads us to eliminate up from the “leading 1”s. 

 

Recall the matrix in Row-Echelon Form that we just saw: 

 

  

1 3 0 7 4

0 0 0 1 9

0 0 0 0 1

0 0 0 0 0

1

2

3

0

 

 

In order to obtain RRE Form, we must use row replacement EROs to kill off the three 

entries in purple (the “7,” the “4,” and the “9”); we need “0”s in those positions. 
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PART H: GAUSS-JORDAN ELIMINATION 

 

This is a matrix-heavy alternative to Gaussian Elimination in which we use EROs to go 

all the way to RRE Form. 

 

A matrix of numbers can have infinitely many Row-Echelon Forms [that the matrix is 

row-equivalent to], but it has only one unique RRE Form.  

 

Technical Note: The popular MATLAB (“Matrix Laboratory”) software has an “rref” 

command that gives this unique RRE Form for a given matrix. 

 

In fact, we can efficiently use Gauss-Jordan Elimination to help us describe the solution 

set of a system of linear equations with infinitely many solutions. 

 

Example 

 

Let’s say we have a system that we begin to solve using Gaussian Elimination. 

Let’s say we obtain the following matrix in Row-Echelon Form: 

 

  

1 2 3

0 1 3

0 0 1

0 0 0

9

5

2

0

 

 

Before this Part, we would stop with the matrices and write out the corresponding 

system. 

 

In Gauss-Jordan Elimination, however, we’re not satisfied with just any Row-

Echelon Form for our final augmented matrix. We demand RRE Form. 

 

To obtain RRE Form, we must eliminate up from two of the “leading 1”s and kill 

off the three purple entries: the “
 

2” and the two “3”s. We need “0”s in those 

positions. 

 

In Gaussian Elimination, we “corrected” the columns from left to right in order to 

preserve our good works. At this stage, however, when we eliminate up, we prefer 

to correct the columns from right to left so that we can take advantage of the “0”s 

we create along the way. 
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(Reminder:) 

 

   

R
1

R
2

R
3

R
4

1 2 3

0 1 3

0 0 1

0 0 0

9

5

2

0

 

 

Use row replacement EROs to eliminate the two “3”s in the third column. 

Observe that we use a “leading 1” from a lower row to kill off an entry from 

a higher row. 

 

old 
  
R

2
 0 1 3  5 

  
+ 3( ) R

3
 0 0 3  6 

new 
  
R

2
 0 1 0  1 

 

old 
  
R

1
 1 2 3  9 

  
+ 3( ) R

3
 0 0 3  6 

new 
  
R

1
 1 2 0  3 

 

New matrix: 

 

R
1

R
2

R
3

R
4

1 2 0

0 1 0

0 0 1

0 0 0

3

1

2

0

 

 

Now, use a row replacement ERO to eliminate the “
 

2” in the second 

column. 

 

old 
  
R

1
 1 2 0  3 

  
+2 R

2
 0 2 0  2 

new 
  
R

1
 1 0 0  1 

 

Observe that our “right to left” strategy has allowed us to use “0”s to 

our advantage. 
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Here is the final RRE Form: 

 

   

     x y z

R
1

R
2

R
3

R
4

1 0 0

0 1 0

0 0 1

0 0 0

1

1

2

0

 

 

We can read off our solution now! 

 

  

x = 1

y = 1

z = 2

 

 

Solution set: 
 

1, 1, 2( ){ } . 

 

As you can see, some work has been moved from the back-substitution stage 

(which is now deleted) to the ERO stage. 
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PART I: SYSTEMS WITH INFINITELY MANY SOLUTIONS (OPTIONAL?) 

 

Example 

 

Solve the system: 

  

x 2y + z + 5w = 3

2x 4y + z + 7w = 5
 

 

Warning: In fact, w is often considered to be the fourth coordinate of ordered  

4-tuples of the form 
  

x, y, z, w( ) . 

 

Solution 

 

The augmented matrix is: 

 

R
1

R
2

1 2 1 5

2 4 1 7

3

5
 

 

Let’s first go to Row-Echelon Form, which is required in both Gaussian 

Elimination and Gauss-Jordan Elimination – that is, unless it is clear at some 

point that there is no solution. 

 

We will use a row replacement ERO and use the “1” in the upper left corner 

to kill off the “2” in the lower left corner and get a “0” in there. 

 

old 
  
R

2
 2 4 1 7  5 

  
+ 2( ) R

1
 2 4 2 10  6 

new 
  
R

2
 0 0 1 3  1 

 

New matrix: 

 

   

R
1

R
2

1 2 1 5

0 0 1 3

3

1
 

 

We now need a “1” where the boldfaced “ 1” is. 

 

 

 

 



(Section 8.1: Matrices and Determinants)  8.30 

 

To obtain Row-Echelon Form, we multiply through R
2
 by 

 
1( ) : 

 

new R
2

( ) 1( ) old R
2

( )  

 

   

x y z w

R
1

R
2

1 2 1 5

0 0 1 3

3

1

RHS

 

 

The “leading 1”s are boldfaced. 

 

We first observe that the system is consistent, because of the following rule: 

 

 

An augmented matrix in Row-Echelon Form corresponds to an 

inconsistent system (i.e., a system with no solution)   

(if and only if) there is a “leading 1” in the RHS. 

 

In other words, it corresponds to a consistent system   

there are no “leading 1”s in the RHS. 

 

 

Warning: There is a “1” in our RHS here in our Example, but it is not 

a “leading 1.” 

 

Each of the variables that correspond to the columns of the coefficient 

matrix (here, x, y, z, and w) is either a basic variable or a free variable. 

 

A variable is called a basic variable   

It corresponds to a column that has a “leading 1.” 

 

A variable is called a free variable   

It corresponds to a column that does not have a “leading 1.” 

 

In this Example, x and z are basic variables, and y and w are free variables. 
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Let’s say our system of linear equations is consistent. 

 

If there are no free variables, then the system has only one solution. 

 

Otherwise, if there is at least one free variable, then the system has  

infinitely many solutions. 

 

 

At this point, we know that the system in our Example has infinitely many 

solutions. 

 

If we want to completely describe the solution set of a system with infinitely 

many solutions, then we should use Gauss-Jordan Elimination and take our 

matrix to RRE Form. We must kill off the “1” in purple below.  

 

x y z w

R
1

R
2

1 2 1 5

0 0 1 3

3

1

RHS

 

 

old 
  
R

1
 1 2 1 5  3 

  
+ 1( ) R

2
 0 0 1 3  1 

new 
  
R

1
 1 2 0 2  2 

 

Our RRE Form: 

 

   

x y z w

R
1

R
2

1 2 0 2

0 0 1 3

2

1

RHS

 

 

The corresponding system: 

 

  

x 2y + 2w = 2

z + 3w = 1
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Now for some steps we haven’t seen before. 

 

We will parameterize (or parametrize) the free variables: 

 

  

Let  y = a,

w = b,

where the parameters a and b represent

any pair of real numbers.

 

 

Both of the parameters are allowed to “roam freely” over the reals. 

 

Let’s rewrite our system using these parameters: 

 

  

x 2a + 2b = 2

z + 3b = 1
 

 

This is a system consisting of two variables and two parameters. 

 

We then solve the equations for the basic variables, x and z: 

 

  

x = 2 + 2a 2b

z = 1 3b

 

 

Remember that y = a  and  w = b , so we have: 

 

x = 2 + 2a 2b

y = a

z = 1 3b

w = b

 

 

Note: In your Linear Algebra class (Math 254 at Mesa), you may want to 

line up like terms. 
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We can now write the solution set.  

 

  
2 + 2a 2b, a, 1 3b, b( ) a and b are real numbers{ }  

 

Comments 

 

This set consists of infinitely many solutions, each corresponding to a 

different pair of choices for a and b.  

 

Some solutions: 

 

a b  (   x, y, z, w   ) 

0 0  (   2, 0, 1, 0   ) 

4 7  ( 20, 4, 20, 7   ) 

 

Because we have two parameters, the graph of the solution set is a  

2-dimensional plane existing in 4-dimensional space. Unfortunately, 

we can’t see this graph! Nevertheless, this is the kind of thinking you 

will engage in in your Linear Algebra class (Math 254 at Mesa)! 
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SECTION 8.2: OPERATIONS WITH MATRICES 

 

We will not discuss augmented matrices until Part G.  

For now, we will simply think of a matrix as a box of numbers. 

 

PART A: NOTATION 

 

The matrix 
 
A = a

ij
, meaning that A consists of entries labeled 

 
a

ij
, where i is the row 

number, and j is the column number. 

 

Example 

 

If A is 2 2 , then A =
a

11
a

12

a
21

a
22

. 

 

Note: a
12

 and a
21

 are not necessarily equal. If they are, then we have a 

symmetric matrix, which is a square matrix that is symmetric about its main 

diagonal. An example of a symmetric matrix is: 

 

2 3

3 7
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PART B: WHEN DOES A = B? 

 

Two matrices (say A and B) are equal  

They have the same size, and they have the same numbers (or expressions) in the same 

positions. 

 

Example 

 

1 2

3 4
=

1 2

3 4
 

 

Example 

 

 

1 2

3 4

1 3

2 4
 

 

If the matrix on the left is A, then the matrix on the right is  A
T

  

(“A transpose”). For the two matrices, the rows of one are the columns of the 

other. 

 

Example 

 

 

0 1
0

1
 

 

The two matrices have different sizes.  

 

The matrix on the left is  1 2 .  

It may be seen as a row vector, since it consists of only 1 row. 

 

The matrix on the right is  2 1. 

It may be seen as a column vector, since it consists of only 1 column. 

 

Observe that the matrices are transposes of each other. 

Think About It: What kind of matrix is, in fact, equal to its transpose? 
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PART C: BASIC OPERATIONS 

 

Matrix addition: If two or more matrices have the same size, then you add them by 

adding corresponding entries. If the matrices do not have the same size, then the sum is 

undefined.  

 

Matrix subtraction problems can be rewritten as matrix addition problems. 

 

Scalar multiplication: To multiply a matrix by a scalar (i.e., a real number in this class), 

you multiply each entry of the matrix by the scalar. 

 

Example 

 

If  

 

  

A =
2 0 1

1 3 2
 

 

  

B =
0 0 0

0 0 0
 

 

B is the  2 3  zero matrix, denoted by “0” or “0
2 3

” – it is the additive 

identity for the set of  2 3  real matrices. However, when we refer to 

“identity matrices,” we typically refer to multiplicative identities, 

which we will discuss later. 

 

  

C =
1 2 0

0 1 3
 

 

then … 
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1) Find   A+ B + 2C  

 

   

A+ B + 2C =
2 0 1

1 3 2
+

0 0 0

0 0 0

Perform matrix addition.

+ 2
1 2 0

0 1 3

Perform scalar multiplication

=
2 0 1

1 3 2
+

2 4 0

0 2 6

=
4 4 1

1 5 4

 

 

 

2) Find A 5C  

 

A 5C = A+ 5( )C

=
2 0 1

1 3 2
+ 5( )

1 2 0

0 1 3

=
2 0 1

1 3 2
+

5 10 0

0 5 15

=
3 10 1

1 2 17
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PART D : A ROW VECTOR( ) TIMES A COLUMN VECTOR( )  
 

We will deal with this basic multiplication problem before we go on to matrix 

multiplication in general. 

 

Let’s say we have a row vector 
   

a
1

a
2

a
n

 and a column vector 

   

b
1

b
2

b
n

.  

Observe that they have the same number of entries; otherwise, our product will be 

undefined. This is how we multiply the row vector and the column vector (in that order); 

the resulting product may be viewed as either a scalar or a 1 1 matrix, depending on the 

context of the problem: 

 

   

a
1

a
2

a
n

b
1

b
2

b
n

=

a
1
b

1
+ a

2
b

2
+ + a

n
b

n
as a scalar( )

or

a
1
b

1
+ a

2
b

2
+ + a

n
b

n
as a 1 1 matrix( )

 

 

In words, we add the products of corresponding entries. 

This should remind you of the dot product of two vectors, which we saw in  

Section 6.4: Notes 6.28. 

 

Warning: A column vector times a row vector (in that order) gives you something very 

different, namely an  n n  matrix. We will see why in the next Part. 

 

Example 

 

 

1 0 3

4

5

1

= 1( ) 4( ) + 0( ) 5( ) + 3( ) 1( )

= 4 + 0 3

= 1

 

 

The product may also be written as 
 
1 . 
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PART E: MATRIX MULTIPLICATION (AB) 

 

When multiplying matrices, we do not simply multiply corresponding entries, although 

MATLAB does have an operation for that. 

 

Technical Definition (Optional?) 

 

(Bear in mind that the “tricks” that we will discuss later will make all of this easier 

to swallow.) 

 

 

Given two matrices A and B, the matrix product AB is defined  

 

The rows of A and the columns of B have the same “length” (i.e., number of 

entries).  

 

That is: the number of columns of A( ) = the number of rows of B( )  
 

 

If AB is defined, then the entry in its   i
th

 row and 
  
j

th
 column equals: 

 

  
the i

th
 row of A( )  times 

  
the j

th
 column of B( )  

 

for appropriate values of i and j. 

 

Another way of looking at this: 

 

If we let  C = AB , where 
 
C = c

ij
, then: 

 

  
c

ij
= the i

th
 row of A( )  times 

  
the j

th
 column of B( )  

 

for appropriate values of i and j. 

 

 

 

 

 

 

 



(Section 8.2: Operations with Matrices)  8.40 

 

Example and Tricks 

 

Consider the matrix product 

   

1 1 0

2 1 3

A

4 1

3 0

1 2

B

. 

 

Is AB defined? If so, what is its size? 

 

 

Let’s consider the sizes of A and B: 

 

       A              B 

   
 
2 3       

 
3 2  

 

 

If the two boxed “inner numbers” are equal, then AB is defined, because: 

 

the number of columns of A( ) = the number of rows of B( ) , 
 

as specified in our Technical Definition. 

 

Warning: The two “outer numbers” (the “2”s here) need not be equal.  

The fact that they are means that the matrix will be square. 

 

 

The size of AB is given by the two “outer numbers” in order. 

 

Here, AB will be  2 2 . 

 

In general, if A is 
 
m n , and B is 

 
n p , then AB will be 

 
m p . 

 

The trick coming up will help explain why. 
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Find AB. 

 

We will use a “traffic intersection” model. 

 

To begin our trick, we will write B to the “northeast” (i.e., entirely 

above and to the right) of A. 

 

Draw thin lines (in blue below) through the rows of A and thin lines 

(in red below) through the columns of B so that all intersection points 

are shown. These intersection points correspond to the entries of AB. 

We can see immediately that the size of AB will be  2 2 . 

 

Warning: Make sure your lines are thin and are placed so that, for 

example, no “ ” signs or “1”s are written over. 

 

 

 

At each intersection point, we take the corresponding row of A and the 

corresponding column of B, and we multiply them as we did in  

Part D. (We are essentially taking the dot product of the two vectors 

whose lines intersect at that point.) 

 

c
11
= 1( ) 4( ) + 1( ) 3( ) + 0( ) 1( ) = 4 3+ 0 = 1

c
12
= 1( ) 1( ) + 1( ) 0( ) + 0( ) 2( ) = 1+ 0 + 0 = 1

c
21
= 2( ) 4( ) + 1( ) 3( ) + 3( ) 1( ) = 8 + 3+ 3= 14

c
22
= 2( ) 1( ) + 1( ) 0( ) + 3( ) 2( ) = 2 + 0 + 6 = 4

 

 

Therefore, 

  

AB =
1 1

14 4
. 
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If the rows of A do not have the same length as the columns of B  

(so that dot products cannot be taken), then the matrix product AB is 

undefined. 

 

Observe that this is all consistent with the Technical Definition. 

 

Even though you may not have to use the 
 
c

ij
 notation, it may be a 

good idea to show some work for partial credit purposes. 

 

Warning: Matrix multiplication is not commutative. It is often the case that 

AB BA . In fact, one product may be defined, while the other is not. 

 

Think About It: When are AB and BA both defined? 

 

Why was matrix multiplication defined in this way? The answer lies in your Linear 

Algebra course (Math 254 at Mesa). The idea of “compositions of linear transformations” 

is key. You’ll see. 
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PART F: IDENTITY MATRICES “I” 

 

An identity matrix  I  is a square matrix with the following form: 

 

 

 

We require “1”s along the main diagonal and “0”s everywhere else. 

 

Observe that this is a special RRE Form; this will come up in Part G. 

 

More specifically, 
 
I

n
 is the  n n  identity. 

 

Example 

 

  

I
3
=

1 0 0

0 1 0

0 0 1

 

 

These matrices are multiplicative identities. They play the role that “1” does in the set of 

real numbers. (Remember that zero matrices were additive identities.) 

 

If A is an  n n  matrix, then AI
n
= A , and I

n
A = A . 

 

Comment: Although matrix multiplication is not, in general, commutative, it is true 

that an identity matrix “commutes” with a matrix of the same size. You get the 

same product, regardless of the order of multiplication. 

 

Note: Even if A is not  n n , it is possible that 
 
AI

n
 or 

 
I

n
A  is defined, in which 

case the result is A. For example: 

 

 

4 5
1 0

0 1
= 4 5  
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PART G: MATRIX NOTATION and SYSTEMS OF LINEAR EQUATIONS 

 

Example (#56 on p.570) 

 

Consider the system: 

  

x
1
+ x

2
3x

3
= 9

x
1
+ 2x

2
= 6

x
1

x
2
+ x

3
= 5

 

 

Observe that this is a square system of linear equations; the number of 

equations (3) equals the number of unknowns (3). 

 

We can write this system as a matrix (or matrix-vector) equation,  AX = B : 

 

   

1 1 3

1 2 0

1 1 1

A

x
1

x
2

x
3

X

=

9

6

5

B

 

 

A is the coefficient matrix (and it is square), and B is the RHS. 

X  may be thought of as a vector of variables or as a solution vector. 

 

We will use Gauss-Jordan Elimination on the augmented matrix 
 

A B  to solve 

for X. This is what we basically did in Section 8.1. 

 

In order to save time, we will skip the steps that take us to Row-Echelon 

Form. Don’t do this in your own work, though! 

 

The   symbol indicates row-equivalence, not equality. 

 

   

A B =

1 1 3

1 2 0

1 1 1

9

6

5

1 1 3

0 1 1

0 0 1

9

5

2
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There are actually infinitely many possible Row-Echelon Forms for A B ; 

the last matrix is just one of them. However, there is only one RRE Form. 

Let’s find it. We proceed with Gauss-Jordan Elimination by eliminating up 

from the “leading 1”s. 

 

  

1 1 3

0 1 1

0 0 1

9

5

2

 

 

We eliminate up the third column: 

 

old 
  
R

2
 0 1 1  5 

  
+R

3
 0 0 1  2 

new 
  
R

2
 0 1 0  3 

 

old 
  
R

1
 1 1 3  9 

  
+3 R

3
 0 0 3  6 

new 
  
R

1
 1 1 0  3 

 

 

New matrix: 

 

  

1 1 0

0 1 0

0 0 1

3

3

2

 

 

We eliminate up the second column: 

 

old R
1
 1 1 0  3 

+ 1( ) R
2
 0 1 0  3 

new 
  
R

1
 1 0 0  0 
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RRE Form: 

 

  

1 0 0

0 1 0

0 0 1

0

3

2

 

 

Observe that the coefficient matrix is 
  
I

3
, the  3 3  identity. 

 

The corresponding system is pretty nifty: 

 

  

x
1
= 0

x
2
= 3

x
3
= 2

 

 

This immediately gives us our solution vector, X: 

 

  

X =

0

3

2

 

 

 

In general, if  AX = B  represents a square system of linear equations that has 

exactly one solution, then the RRE Form of 
 

A B  will be 
 

I X , where I 

is the identity matrix that is the same size as A. We simply grab our solution 

from the new RHS. 
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SECTION 8.3: THE INVERSE OF A SQUARE MATRIX 

 

 

PART A: (REVIEW) THE INVERSE OF A REAL NUMBER 

 

If a is a nonzero real number, then 

  

aa
1
= a

1

a
= 1 . 

  a
1
, or 

1

a
, is the multiplicative inverse of a, because its product with a is 1,  

the multiplicative identity. 

 

 

Example 

 

 

3
1

3
= 1 , so 3 and 

 

1

3
 are multiplicative inverses of each other. 

 

 

PART B: THE INVERSE OF A SQUARE MATRIX 

 

If A is a square  n n  matrix, sometimes there exists a matrix   A
1
 (“A inverse”) such that 

 

  
AA

1
= I

n
 and 

  
A

1
A = I

n
. 

 

An invertible matrix and its inverse commute with respect to matrix multiplication. 

 

Then, A is invertible (or nonsingular), and   A
1
 is unique. 

 

In this course, an invertible matrix is assumed to be square. 

 

Technical Note: A nonsquare matrix may have a left inverse matrix or a right 

inverse matrix that “works” on one side of the product and produces an identity 

matrix. They cannot be the same matrix, however. 
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PART C :  FINDING A

- 1
 

 

We will discuss a shortcut for  2 2  matrices in Part F. 

 

Assume that A is a given  n n  (square) matrix. 

 

 

A is invertible  Its RRE Form is the identity matrix 
 
I

n
 (or simply I). 

 

It turns out that a sequence of EROs that takes you from an invertible matrix 

A down to  I  will also take you from  I  down to   A
1
. (A good Linear Algebra 

book will have a proof for this.) We can use this fact to efficiently find   A
1
. 

 

We construct 
 

A I . We say that A is in the “left square” of this matrix, 

and  I  is in the “right square.” 

 

We apply EROs to 
 

A I  until we obtain the RRE Form 
  

I A
1

. 

That is, as soon as you obtain  I  in the left square, you grab the matrix in the 

right square as your   A
1
. 

 

If you ever get a row of “0”s in the left square, then it will be impossible to 

obtain 
  

I A
1

, and A is noninvertible (or singular). 

 

Example 

 

Let’s go back to our A matrix from Section 8.2: Notes 8.44. 

 

  

A =

1 1 3

1 2 0

1 1 1

 

 

Find   A
1
. 
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Solution 

 

We construct 
 

A I : 

 

 

1 1 3

1 2 0

1 1 1

1 0 0

0 1 0

0 0 1

 

 

We perform Gauss-Jordan Elimination to take the left square down to  I. 

The right square will be affected in the process, because we perform EROs 

on entire rows “all the way across.” 

 

We will show a couple of row replacement EROs, and then we will leave the 

remaining steps to you. 

 

We will kill off the purple entries and put “0”s in their places. 

 

old 
  
R

2
 1 2 0  0 1 0 

  
+R

1
 1 1 3  1 0 0 

new R
2
 0 3 3  1 1 0 

 

old 
  
R

3
 1 1 1  0 0 1 

  
+ 1( ) R

1
 1 1 3  1 0 0 

new 
  
R

3
 0 2 4  1 0 1 

 

New matrix: 

 

 

1 1 3

0 3 3

0 2 4

1 0 0

1 1 0

1 0 1

 

 

(Your turn! Keep going ….) 
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RRE Form: 

 

(Remember, this form is unique.) 

 

   

1 0 0

0 1 0

0 0 1

I

1 / 3 1 / 3 1

1 / 6 2 / 3 1 / 2

1 / 6 1 / 3 1 / 2

A 1

 

 

Check. (Optional) 

 

You can check that   AA
1
= I . If that holds, then it is automatically 

true that   A
1
A = I . (The right inverse and the left inverse of an 

invertible matrix must be the same. An invertible matrix must 

commute with its inverse.) 
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PART D: THE INVERSE MATRIX METHOD FOR SOLVING SYSTEMS 

 

In Section 8.2: Notes 8.44, we expressed a system in the matrix form  AX = B : 

 

   

1 1 3

1 2 0

1 1 1

A

x
1

x
2

x
3

X

=

9

6

5

B

 

 

A should look familiar. In Part C, we found its inverse,   A
1
. 

 

How can we express  X  directly in terms of A and B? 

 

Review from Algebra I (Optional) 

 

Let’s say we want to solve ax = b , where   a 0  and a and b are real 

constants. 

 

ax = b

1

a
a

=1

x =
1

a
b

x =
b

a

 

 

Because   a
1
 represents the multiplicative inverse of a, we can say that 

  

a
1
=

1

a
, and the steps can be rewritten as follows: 

 

   

ax = b

a
1
a

=1

x = a
1
b

x = a
1
b
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Solving the Matrix Equation AX = B  

 

Assume that A is invertible. 

 

Note: Even though 0 is the only real number that is noninvertible (in a 

multiplicative sense), there are many matrices other than zero matrices 

that are noninvertible. 

 

It is assumed that A, X, and B have “compatible” sizes. That is, AX is 

defined, and AX and B have the same size. 

 

The steps should look familiar: 

 

AX = B

A
1
A

= I

X = A
1
B

X = A
1
B

 

 

 

The Inverse Matrix Method for Solving a System of Linear Equations 

 

If A is invertible, then the system AX = B  has a unique solution 

given by   X = A
1
B . 
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Comments 

 

• We must left multiply both sides of  AX = B  by   A
1
. If we were to 

right multiply, then we would obtain   AXA
1
= BA

1
; both sides of 

that equation are undefined, unless A is  1 1. Remember that matrix 

multiplication is not commutative. Although   x = ba
1
 would have 

been acceptable in our Algebra I discussion (because multiplication of 

real numbers is commutative),   X = BA
1
 would be inappropriate 

here. 

 

• I  is the identity matrix that is the same size as A. It plays the role that 

“1” did in our Algebra I discussion, because 1 was the multiplicative 

identity for the set of real numbers.  

 

• This result is of more theoretical significance than practical 

significance. The Gaussian Elimination (with Back-Substitution) 

method we discussed earlier is often more efficient than this inverse-

based process. However,   X = A
1
B  is good to know if you’re using 

software you’re not familiar with. Also, there’s an important category 

of matrices called orthogonal matrices, for which   A
1
= A

T
; this 

makes matters a whole lot easier, since  A
T

 is trivial to find. 
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Back to Our Example 

 

We will solve the system from Section 8.2: Notes 8.44 using this Inverse Matrix 

Method. 

 

   

1 1 3

1 2 0

1 1 1

A

x
1

x
2

x
3

X

=

9

6

5

B

 

 

Solution 

 

It helps a lot that we’ve already found   A
1
 in Part C; that’s the bulk of the 

work. 

 

  

X = A
1
B

=

1 / 3 1 / 3 1

1 / 6 2 / 3 1 / 2

1 / 6 1 / 3 1 / 2

9

6

5

=

0

3

2

 

 

This agrees with our result from the Gauss-Jordan Elimination method we 

used in Section 8.2: Notes 8.44-8.46. 
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PART E : THE DETERMINANT OF A 2 2 MATRIX "BUTTERFLY RULE"( )  

 

If A =
a b

c d

, then the determinant of A, denoted by det A( )  or A , is given by: 

 

  
det A( ) = ad bc  

 

i.e., 
  
det A( ) = product along main diagonal( ) product along skew diagonal( )  

 

The following “butterfly” image may help you recall this formula. 

 

 

 

Warning: 
 

A  should not be confused with absolute value notation.  

See Section 8.4. 

 

We will further discuss determinants in Section 8.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(Section 8.3: The Inverse of a Square Matrix)  8.56 

 

PART F : SHORTCUT FORMULA FOR THE INVERSE OF A 2 2 MATRIX  

 

If 

 

A =
a b

c d

, then:  

  

A
1
=

1

det A( )
d b

c a

 

 

If det A( ) = 0 , then   A
1
 does not exist. 

 

Remember that we: 

 

Switch the entries along the main diagonal. 

 

Flip the signs on (i.e., take the opposite of) the entries along the skew 

diagonal. 

 

This formula is consistent with the method from Part C. 

 

 

Example 

 

If 

  

A =
1 2

3 4
, find   A

1
. 

 

Solution 

 

First off: 

 

  

det A( ) = 1( ) 4( ) 2( ) 3( )
= 2

 

 

Now: 

 

  

A
1
=

1

2

4 2

3 1

=
2 1

3 / 2 1 / 2
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SECTION 8.4: THE DETERMINANT OF A SQUARE MATRIX 

 

 

PART A: INTRO 

 

Every square matrix consisting of scalars (for example, real numbers) has a determinant, 

denoted by det A( )  or A , which is also a scalar. 

 

 

PART B: SHORTCUTS FOR COMPUTING DETERMINANTS 

 

(We will discuss a general method in Part C. The shortcuts described here for small 

matrices may be derived from that method.) 

 

 

 
1 1 Matrices  

 

If 
 
A = c , then 

  
det A( ) = c . 

 

Warning: It may be confusing to write 
 

A = c . Don’t confuse determinants 

(which can be negative in value) with absolute values (which cannot). 

 

 

2 2 Matrices  (“Butterfly Rule”) 

 

If 

 

A =
a b

c d

, then 
  
det A( ) = ad bc . 

 

i.e., 

 

a b

c d

= ad bc . (Brackets are typically left out.) 

 

 

We discussed this case in Section 8.3: Notes 8.55. 
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3 3 Matrices  (“Sarrus’s Rule,” named after George Sarrus) 

 

If A is  3 3 , then, to find 
  
det A( ) : 

 

1) Rewrite the 1
st
 and 2

nd
 columns on the right (as “Columns 4 and 5”). 

 

2) Add the products along the three full diagonals that extend from  

upper left to lower right. 

 

3) Subtract the products along the three full diagonals that extend from 

lower left to upper right. 

 

 

The wording above is admittedly awkward. Look at this Example: 

 

Example 

 

 Let 

  

A =

1 1 2

3 2 1

0 1 1

. Find det A( ) . 

 

i.e., Find 

 

1 1 2

3 2 1

0 1 1

. 

 

Solution 

 

We begin by rewriting the 1
st
 and 2

nd
 columns on the right. 

 

 

1 1 2

3 2 1

0 1 1

1 1

3 2

0 1
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In order to avoid massive confusion with signs, we will set up a 

template that clearly indicates the products that we will add and those 

that we will subtract. 

 

 

 

The “product along a [full] diagonal” is obtained by multiplying 

together the three numbers that lie along the diagonal. We will 

compute the six products corresponding to our six indicated diagonals, 

place them in the parentheses in our template, and compute the 

determinant. 

 

Time-Saver: If a diagonal contains a “0,” then the corresponding 

product will automatically be 0. 

 

 

 

Therefore, 

 

  

det A( ) = 2 + 0 + 6 0 1+ 3

= 10

 

 

 

Warning: Although Sarrus’s Rule seems like an extension of the Butterfly Rule 

from the  2 2  case, there is no similar shortcut algorithm for finding determinants 

of  4 4  and larger matrices. Sarrus’s Rule is, however, related to the 

“permutation-based” definition of a determinant, which you may see in an 

advanced class. 
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PART C: “EXPANSION BY COFACTORS” METHOD FOR COMPUTING 

DETERMINANTS 

 

This is hard to explain without an Example to lean on! 

 

This method works for square matrices of any size. 

 

Example 

 

Find 

 

1 1 2

3 2 1

0 1 1

.  

 

(In Part B, we already found out this equals 10.) 

 

Solution 

 

Choose a “magic row or column” to expand along, preferably one with “0”s. 

We will call its entries our magic entries. 

 

In principle, you could choose any row or any column. 

Here, let’s choose the 1
st
 column, in part because of the “0” in the lower 

right corner. 

 

 

1 1 2

3 2 1

0 1 1

 

 

Because we are dealing with a  3 3  matrix, we will set up the  3 3   

sign matrix. This is always a “checkerboard” matrix that begins with a “+” 

sign in the upper left corner and then alternates signs along rows and 

columns. 

 

+ +

+

+ +

 

 

We really only need the signs corresponding to our magic row or column. 
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Note: The sign matrix for a  4 4  matrix is given below. 

 

+ +

+ +

+ +

+ +

 

 

Technical Note: The sign of the i, j( )  entry of the sign matrix is the sign of 

1( )
i+ j

, where i is the row number of the entry, and j is the column number. 

 

Back to our Example: 

 

 

1 1 2

3 2 1

0 1 1

 with sign matrix 

+ +

+

+ +

 

 

The following may be confusing until you see it “in action” on the next 

page. 

 

Our cofactor expansion for the determinant will consist of three terms that 

correspond to our three magic entries. Each term will have the form: 

 

(Sign from sign matrix) (Magic entry) (Corresponding minor), 

 

where the “corresponding minor” is the determinant of the submatrix 

that is obtained when the row and the column containing the magic 

entry are deleted from the original matrix. 

 

Note: The “corresponding cofactor” is the same as the corresponding 

minor, except that you incorporate the corresponding sign from the 

sign matrix. In particular, if the corresponding sign is a “ ” sign, then 

the cofactor is the opposite of the minor. Then, the determinant is 

given by the sum of the products of the magic entries with their 

corresponding cofactors. 
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Here, we have: 

 

 

 

Observe that the third minor is irrelevant, because we know that the 

third term will be 0, anyway. This is why we like choosing magic 

rows and columns that have “0”s in them! 

 

There are various ways to write out the cofactor expansion quickly and 

accurately. With practice, you should find the one that works best for you. 

Some people may need to write out the step above. 

 

We now have: 

 

   

- 1 1 - 2

3 2 1

0 - 1 - 1

= + (- 1)
2 1

- 1 - 1

= 2 1( )
= 1

(3)
1 - 2

- 1 - 1

= 1 2( )
= 3

= 1( ) 1( ) 3 3( )
= 10
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Note 1: It is a coincidence that the magic entries 
 

1 and 3 are equal to their 

corresponding cofactors here. 

 

Note 2: Observe that we got the same answer when we used Sarrus’s Rule 

back in Part B. We better have! 

 

Note 3: Observe that we expand the determinant of a  3 3  matrix in terms 

of the determinants of up to three 2 2  matrices. Likewise, we expand the 

determinant of a  4 4  matrix in terms of the determinants of up to four 

 3 3  matrices. This is why we like exploiting “0”s along a magic row or 

column – and why it is often painful to compute determinants of large 

matrices using this cofactor expansion method.  

 

Note 4: An efficient alternative method employs the EROs we discussed 

back in Section 8.1 on Gaussian Elimination: 

 

• Row Replacement EROs preserve determinants.  

 

For example, 

 

 

1 1

1 1
=

1 1

0 0
= 0  

 

• A single Row Interchange (Switch) ERO flips the sign of the 

determinant.  

 

For example, 

 

 

1 2

3 4
=

3 4

1 2
 

 

• When computing determinants, a nonzero scalar may be  

“factored out” of an entire row or an entire column.  

 

For example, 

 

 

4 8

7 9
= 4

1 2

7 9
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Note 5: The following basic determinant properties are useful, particularly in 

the Gaussian Elimination method for computing determinants: 

 

• If a square matrix has a row or a column consisting of all “0”s, then 

its determinant is 0. 

 

For example, 

 

1 1

0 0
= 0  

 

• If a square matrix is in triangular form (i.e., has all “0”s above or 

below the main diagonal), then its determinant equals the product of 

the entries along the main diagonal. 

 

For example, 

 

 

2 70 30

0 3 50

0 0 4

= 2( ) 3( ) 4( ) = 24  

 

Can you see how the above properties are derived from the Cofactor 

Expansion method for computing determinants? 
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Example 

 

Find 

1 2 5 2

0 0 3 0

2 6 7 5

5 0 4 4

.  

 

Solution 

 

Remember that there is no nice analog to Sarrus’s Rule here, because we are 

dealing with a  4 4  matrix. 

 

Let’s expand along the 2
nd

 row so that we can exploit its “0”s. 

 

We have: 

 

 

1 2 5 2

0 0 3 0

2 6 7 5

5 0 4 4

 with partial sign matrix 

+ +

 

 

Observe that, as far as the sign matrix goes, we only need to know that 

the “ ” sign corresponds to the magic “3.” To find this out, you could 

either start with the “+” in the upper left corner and snake your way to 

that position (see above), or you could observe that the “3” is in  

Row 2, Column 3, and 
 

1( )
2+3

= 1( )
5

= 1. 

 

  

1 2 5 2

0 0 3 0

2 6 7 5

5 0 4 4

= (3)

1 2 2

2 6 5

5 0 4

Use Sarrus's Rule or
Cofactor Expansion.

It turns out this equals 2.

You show work!

= 3 2( )
= 6
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PART D : THE CROSS PRODUCT OF TWO VECTORS IN R

3
 

 

In Section 6.4, we discussed the dot product of two vectors in   R
n
 (n-dimensional real 

space). 

 

There is another common way to multiply two vectors in R
3
 (3-dimensional real space), 

specifically. 

 

Given two vectors 
   
a = a

1
, a

2
, a

3
 and 

   
b = b

1
, b

2
, b

3
 in   R

3
, the cross product  a b  is 

given by: 

 

   

a b =

i j k

a
1

a
2

a
3

b
1

b
2

b
3

, 

 

where i = 1, 0, 0 , j = 0,1, 0 , and k = 0, 0,1  are the standard unit vectors in 

  R
3
. 

 

This notation is informal, because the determinant is only “officially” defined if 

our matrix consists only of scalars. 

 

Note: Although the dot product operation is commutative (i.e.,  a • b = b • a  for two 

vectors a and b in the same space), the cross product operation is not. In fact, the cross 

product operation is anticommutative, meaning that 
 
a b = b a( ) . Recall from  

Notes 8.63 that: 

 

   

i j k

a
1

a
2

a
3

b
1

b
2

b
3

=

i j k

b
1

b
2

b
3

a
1

a
2

a
3

 

 

Geometrically,  a b  is a vector that is perpendicular (or orthogonal) to both a and b. 
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SECTION 8.5: APPLICATIONS OF DETERMINANTS

PART A: CRAMER’S RULE FOR SOLVING SYSTEMS

A square system of linear equations is a system of n linear equations in n unknowns,
where   n ∈Z+ . Cramer’s Rule uses determinants to solve such a system. For now, we
assume that the unknowns are x, y, etc. and that they make up  X , the vector of
unknowns.

Cramer’s Rule

Write the augmented matrix for the system  AX = B :

 
A B⎡⎣ ⎤⎦

• A is the coefficient matrix.

If the system is square, A will be a square matrix.

• B is the right-hand side (RHS); you could use RHS, instead.

Compute the following determinants:

• Let 
  
D = A , or det A( ) .

• Let 
  
D

x
= A

x
, or det A

x( ) .

where  Ax
 is identical to A, except that the x-column of A is

replaced by B, the RHS.

(continued on next page)
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Cramer’s Rule (cont.)

• Let 
  
D

y
= A

y
, or det A

y( ) ,
where 

 
A

y
 is identical to A, except that the y-column of A is

replaced by B, the RHS.

•  Dz
,  Az

, etc. are defined analogously as necessary.

If   D ≠ 0 , there is a unique solution given by:

 
x =

D
x

D
,  

 
y =

D
y

D
,  

 
z =

D
z

D
  (if applicable), etc.

If   D = 0 , there is not a unique solution. Then:

• If all of the other determinants,  Dx
, 
 
D

y
, etc. are also 0, then the

system has infinitely many solutions.

• Otherwise, the system has no solution. The solution set is ∅ ,
the empty set.

Note: Observe that the formulas for x, y, etc. fall apart if   D = 0 .

Note: In fact, if A is square, then its determinant   D ≠ 0  if and only if A is invertible,
which is true if and only if  AX = B  has a unique solution (given by   X = A −1B ). See the
Inverse Matrix Method for solving systems in Section 8.3, Part D.

Note: One advantage that this method has over Gaussian Elimination with Back-
Substitution is that the value of one unknown can be found without having to find the
values of any others.

Technical Note: For large systems, the Expansion by Cofactors Method for computing
determinants (found in Section 8.4, Part C) may be impractical. See Notes 3, 4, and 5 in
Notes 8.63 and 8.64.



(Section 8.5: Applications of Determinants)  8.69

Example (Two linear equations in two unknowns)

Solve the system: 
  

2x − 9y = 5

3x − 3y = 11

⎧
⎨
⎩

Solution

The augmented matrix is:

   

   x        y

2 −9

3 −3
A

 

5

11
B


⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Compute the necessary determinants:

Note: Your instructor may want you to show more work here.

  

                  x      y

D = A =
2 −9

3 −3
= 21

Warning: When constructing the  Ax
 and 

 
A

y
 matrices, which are

“mutated” versions of the A matrix, remember to replace the correct
column with B, the RHS. You replace the column corresponding to the
subscript, which is the variable that the matrix helps solve for. See the
Warning in the next Example.

  

                    B      y

D
x
= A

x
=

5 −9

11 −3
= 84

  

                   x  B

D
y
= A

y
=

2 5

3 11
= 7
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Since   D ≠ 0 , the system has a unique solution, which is given by:

  
x =

D
x

D
=

84

21
= 4

  
y =

D
y

D
=

7

21
=

1

3

Warning: You may have been tempted to write down the

fraction 
 

21

7
. Remember that non-integers may appear in your

solutions.

The solution set is then: 
 

4,
1

3

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

.

Note: Our solution may be checked in the original system.

Note: Observe that we can solve for x without solving for y.
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Example (Three linear equations in three unknowns)

Solve the system: 

  

x + z = 0

x − 3y = 1

4y − 3z = 3

⎧

⎨
⎪

⎩
⎪

Solution

The augmented matrix is:

   

   x     y      z

1 0 1

1 −3 0

0 4 −3
A

  

0

1

3
B


⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Compute the necessary determinants:

Note: Your instructor may want you to show more work here.

  

                  x     y       z

D = A =
1 0 1

1 −3 0

0 4 −3

= 13

Warning: When constructing the  Ax
 matrix, remember to replace the

x-column with B, the RHS, and leave the y- and z-columns intact. (If
you remember this, then the two variable case may be less confusing.)
The 

 
A

y
 and  Az

 matrices are constructed analogously.

  

                   B     y         z

D
x
= A

x
=

0 0 1

1 −3 0

3 4 −3

= 13
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                    x  B     z

D
y
= A

y
=

1 0 1

1 1 0

0 3 −3

= 0

  

                    x    y      B

D
z
= A

z
=

1 0 0

1 −3 1

0 4 3

= −13

Since   D ≠ 0 , the system has a unique solution, which is given by:

  
x =

D
x

D
=

13

13
= 1

  
y =

D
y

D
=

0

13
= 0

  
z =

D
z

D
=
−13

13
= −1

The solution set is then: 
 

1, 0, −1( ){ } .

Note: Our solution may be checked in the original system.
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PART B: AREA AND VOLUME

In Calculus: In Multivariable Calculus (Calculus III: Math 252 at Mesa), you may study
triple scalar products (when dealing with three-dimensional vectors) and Jacobians,
which employ the following ideas.

Determinants and Area

Assume that A is a  2 × 2  matrix of real numbers. Consider the position vectors
corresponding to either the rows or the columns of A.

The area of the parallelogram determined by those vectors is given by 
  
det A( ) ,

or 
 

A , the absolute value of the determinant of A.

(If it is 0, the vectors are collinear – they lie on the same line, and the
parallelogram is degenerate.)

In these Examples, we will consider the position vectors corresponding to the
columns of the matrices.

Example Example

 

2 0

0 3
= 6

 

2 1

0 3
= 6

Think About It: Can you give other reasons why these parallelograms have
the same area?
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Follow-Up Example

The area of the triangle determined by the position vectors of interest equals
half the area of the parallelogram determined by them.

 

1

2

2 1

0 3
=

1

2
6( ) = 3

Example

 

1 2

1 1
= −1 = 1

Think About It: Why do you think the determinant is negative in this
Example? Test your guess by trying out some examples of your own.
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Example

 

1 2

2 4
= 0

The position vectors here are collinear.

Technical Note: We may analyze the row vectors or the column vectors of the
matrix for the purposes of finding area or volume, because a square matrix and its
transpose (see Notes 8.35) have the same determinant. i.e., If A is a square matrix,

then 
  
det A( ) = det AT( ) .

Technical Note: If the rows or the columns of a square matrix are reordered, then
the determinant will change by at most a sign, and its absolute value stays the
same. Therefore, the row or column vectors may be written in the matrix in any
order for the purposes of finding area or volume.
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Determinants and Volume

Assume that A is a  3× 3  matrix of real numbers. Consider the position vectors
corresponding to either the rows or the columns of A.

The volume of the parallelepiped determined by those vectors is given by

  
det A( ) , or 

 
A , the absolute value of the determinant of A.

(If it is 0, the vectors are coplanar – they lie on the same plane, and the
parallelepiped is degenerate.)

A parallelepiped:

In Calculus: In Multivariable Calculus (Calculus III: Math 252 at Mesa), you may
study the triple scalar product (“TSP”) of the row or column vectors (a, b, and c,
say) in the  3× 3  matrix A. The TSP equals 

  
det A( ) . The TSP can also be written,

and is usually defined, in terms of dot and cross products as: 
 
a × b( ) • c , or

 
a • b × c( ) . For more information, see my Math 252 notes on Section 14.4 in the

Swokowski Calculus text.
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