CHAPTER 10:

Conic Sections and Polar Coordinates

10.1: Conic Sections

10.2: Parabolas

10.3: Ellipses

10.4: Hyperbolas

10.5: Parametric Equations
10.6: Polar Coordinates

10.7: Polar Curves

* Conic sections are cross sections of a cone.
* The four types of conic sections are circles, parabolas, ellipses, and hyperbolas.
* Parametric equations can be used to describe oriented curves.

* Polar coordinates draw upon ideas we saw with vectors in Chapter 6. They are an
alternative to Cartesian coordinates for a plane.

* Polar curves in the plane can be determined by equations in the polar coordinates
rand 6.
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SECTION 10.1: CONIC SECTIONS

LEARNING OBJECTIVES

» Know the four types of conic sections.

PART A: DISCUSSION

» Conic sections are cross sections of a cone.

» There are four types of conic sections:

§ Circles
(which we studied in Section 0.13)

§ Parabolas
(which we studied in Section 2.1; we will see more in Section 10.2)

§ Ellipses
(in Section 10.3)

§ Hyperbolas
(in Section 10.4).

* Circles are not technically ellipses, but it is often helpful to compare circles and
ellipses.

* A video on conic sections may be found here:

https://www.youtube.com/watch?v=HO2zAU3Eppo

Some corrections to the video:
* The definition of directrix in the video is not commonly accepted.

* A true cone technically has no “base”; it consists of two nappes of infinite
surface area.
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SECTION 10.2: PARABOLAS

LEARNING OBJECTIVES

* Know the locus (geometric) definition of a parabola.
* Locate the focus and directrix of a parabola.

PART A: DISCUSSION

* In Section 2.1, we discussed parabolas. The key point that we identified on the
parabola was the vertex (the turning point).

» Geometrically, a parabola is determined by a point (the focus) and a line
(the directrix), both in a plane.

PART B: THE LOCUS (GEOMETRIC) DEFINITION OF A PARABOLA

A parabola consists of all points that are equidistant between a fixed point
(called the focus) and a fixed line (called the directrix).

* The vertex of the parabola given by y = x*, which is at (O, O), has distance %

from both the focus and the directrix.

Directrix

* The vertex is the point on the parabola that is closest to the focus.

* The vertex is also the point on the parabola that is closest to the directrix.
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* More generally, the vertex of the parabola y = ax’ (a > 0) has distance 4i from
a

both the focus and the directrix.

y
y = ax’
1
421 Foc
T — X
:
-
4@ Directrix

A video on how to construct a parabola is here; the directrix would be
somewhere in the middle of the page, not at the bottom:

https://www.youtube.com/watch?v=M9g71XrMyeo

PART C: REFLECTIVE PROPERTIES

« All of the conic sections have reflective properties involving their foci
(the plural of focus) that are useful in physics.

* These videos demonstrate the reflective properties of parabolas:

https://www.youtube.com/shorts/DK 1pilfMA34

» Rays emanating from the focus reflect off the parabola in parallel rays.

« If a parabola is revolved about its axis, the resulting three-dimensional surface is
called a paraboloid. Where are paraboloids found on a car?
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SECTION 10.3: ELLIPSES

LEARNING OBJECTIVES

» Know the locus (geometric) definition of an ellipse.
* Obtain standard form for the equation of an ellipse.
* Locate the center, vertices, co-vertices, and foci of an ellipse.

* Find the eccentricity of an ellipse.

PART A: DISCUSSION

» Geometrically, an ellipse is determined by two points (the foci) in a plane.
* The center, foci, and vertices of an ellipse all lie on the major axis of the ellipse.
* The eccentricity of an ellipse helps describe its shape.

 The standard form of the equation of an ellipse can be used to find the center,
foci, vertices, co-vertices, and eccentricity of the ellipse.

PART B: THE LOCUS (GEOMETRIC) DEFINITION OF AN ELLIPSE

An ellipse consists of all points whose sum of distances from two fixed points
(called the foci, the plural of focus) in a plane stays constant.

Below, =d _+d :
3 74

focus focus

* Imagine that the two ends of a string are being pinned down at the two foci.
A marker stretches out the string until it is taut. If the marker is placed at the
in the above figure, then the length of the string is given by

Similarly, if the marker is placed at the purple point, then the length of the string
is given by d3 + d4.

* A video on how to construct an ellipse is here:
https://www.youtube.com/watch?v=7UD8hOs-val
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PART C: TERMINOLOGY

vertex\ focus center focus

major axis

* An ellipse has a center, but, unlike a circle, an ellipse does not have a constant
radius or diameter.

» The major axis of an ellipse can be thought of as the “longest diameter” in the
ellipse.

§ Terms such as “major axis” may refer to line segments or their lengths.
§ The vertices are the endpoints of the major axis.
§ The center is the midpoint of the major axis.

§ The two foci lie between the center and the two vertices; all five points lie
on the major axis, and they are symmetric about the center.

 The minor axis can be thought of as the “shortest diameter” that passes through
the center. It is perpendicular to the major axis.

co-vertex
. ' minor axis
co-vertex
- . - 2
major axis

§ The endpoints of the minor axis are sometimes called the co-vertices of
the ellipse.
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semiminor axis

semiminor axis

» The semimajor axis of an ellipse can be thought of as the “longest radius” in the

ellipse.
§ Think: “Half of the major axis.”

§ Geometrically, there are really two semimajor axes, each extending from
the center to each vertex. Together, they make up the major axis.

» The semiminor axis can be thought of as the “shortest radius” in the ellipse.

§ Think: “Half of the minor axis.”

§ Geometrically, there are really two semiminor axes, each extending from
the center to each co-vertex. Together, they make up the minor axis.
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PART D: NOTATION: HORIZONTAL and VERTICAL ELLIPSES

Standard Notation for Lengths and Distances in an Ellipse

a = semimajor axis
2a = major axis

b = semiminor axis
2b = minor axis

¢ = distance from the center to each focus

We assume that a, b, ¢ > 0.

Below, the blue points are the vertices. The purple points are the co-vertices.

Horizontal (“x-long”) Ellipse

A horizontally elongated ellipse has a horizontal major axis.

b
41 [ 2b C ¢

[ —— —]
focus center focus
j b

Vertical (“y-long”) Ellipse

A vertically elongated ellipse has a vertical major axis.

focus
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PART E: MAJOR AXIS AS STRING LENGTH

In Part B, we saw that and d ; + d4 could be thought of as the total length

of a string used to construct the ellipse:

focus focus

In fact, in a pleasant surprise, it turns out that they both equal the major axis, 2a.
The length of the string is 2a.

Imagine that our marker is at the black point indicated below.

d5 focus focus

de

The length of the string is dS + ¢/ . Imagine cutting off and moving the red piece

of the string over to the right end of the piece of the string.

ds
o

Observe that the length of the string, d5 +¢ =72, the major axis.
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PART F: FORMULA FOR LOCATING FOCI

Formula for Locating the Foci of an Ellipse (Finding ¢)

WARNING 1: Signs. Although the Pythagorean Theorem is behind this
formula, we have a minus sign (—) on the right-hand side. We are going to apply

the Pythagorean Theorem to obtain the formula a2 = b2+ ¢2 (See also Footnote 1.)

Remember the setup for a horizontal ellipse:

Imagine that our marker is at the black point at the top of the ellipse.
In Part E, we showed that the total length of the string is 2a.
By symmetry, the marker separates the string into two pieces, each of length a.

focus center focus

By the Pythagorean Theorem,

2= 24 o2
2_p2= 2
2=,2—p2

(Remember that a, b, ¢ > 0.) Note that ¢2< ¢?and ¢ < «. This makes sense,
since the foci are closer to the center than the vertices are.

By definition of the semimajor and semiminor axes, we also have: b <
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PART G: ECCENTRICITY

The eccentricity of an ellipse is denoted by e. It is a measure of how elongated
the ellipse is.

Note: This e has nothing to do with the number e (about 2.718) that we saw in
Chapter 3.

For an ellipse, 0<e < 1.

For an ellipse, we already know (see Part F):
0<c<a

Divide all three parts by a:
0O ¢ a
a a a

0<e <1

Play with this applet on ellipses:
https://www.mathopenref.com/ellipsesemiaxes.html

Other conic sections:

We still use:

e=—
a

* A circle has ¢ = (. Imagine the foci of ellipses converging towards the

center.

A parabola has ¢ = 1. This comes from the general definition of
eccentricity. Let P be a point on a conic section, and let F be the focus that is
closest to that point. The distance between P and F divided by the
perpendicular distance between P and a fixed line (the directrix) gives the
eccentricity, and it remains constant for the points on the conic section. For a

parabola, this is 1. See: https://www.mathsisfun.com/geometry/eccentricity.html

* A hyperbola has ¢ > 1. See Section 10.4.
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Comparing Eccentricities of Ellipses:

The higher e is, the more elongated the ellipse is.

For the ellipse below, ¢ =(.3.
c 18 30% of «. That 1s, the distance between each focus and the center is
30% of the distance between each vertex and the center.

If you’re curious, see Footnote 2 on the equations of these ellipses.
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PART H: STANDARD FORM FOR THE EQUATION OF AN ELLIPSE

Standard Form for the Equation of an Ellipse (with Center at (0,0))
For a horizontal ellipse, it is:
x2 2
—2+—2=1, where a > b.
a b
For a vertical ellipse, it is:
x2 y2
—+ — =1, where a > b.
bZ 612

« If the larger denominator is below x2 then we have a horizontal
(“x-long”) ellipse.

« If the larger denominator is below y?2 then we have a vertical
(“y-long”) ellipse.

Note: If a = b, then we would have a circle of radius a.
Example 1 (Standard Form,; Horizontal Ellipse with Center at (0,0))

x2 y2
The graph of 3 + 7 =1 is below.

y
2
jb =2
-3 3 X
)

« The larger denominator is 9, so ¢>=9 and ¢ = 3.

« Because the larger denominator is below the x? the ellipse is horizontal
(“x-long”).

« The smaller denominator is 4, so b2=4and b =2.
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* If we set y =(, we see that the x-intercepts are at (—3,0) and (3,0).
This makes sense, since we have a horizontal ellipse with center at (0, 0) and
a=3.

* [f we set x =0, we see that the y-intercepts are at (0, —2) and (0, 2).
This makes sense, since we have a horizontal ellipse with center at (0, 0) and

b=2¢

Example 2 (Standard Form; Vertical Ellipse with Center at (0, 0))
X2y
The graph of 7 + ? =1 is below.

y
3

-3 |[——n

b=2

« The larger denominator is 9, so ¢>=9 and g = 3.

* Because the larger denominator is below the yz, the ellipse is vertical
(GGy_long”)-

e The smaller denominator is 4, so b2=4and b =2.

* If we set y =0, we see that the x-intercepts are at (—2,0) and (2, 0).

This makes sense, since we have a vertical ellipse with center at (0,0) and

b=2.

* [f we set x =0, we see that the y-intercepts are at (0, —3) and (0, 3).
This makes sense, since we have a vertical ellipse with center at (0,0) and

a=3.9
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To translate the ellipse so that the new center is at (4, k), use Section 1.4, Part F
on translations through coordinate shifts. See also Section 0.13 on circles.

 We replace x with (x — ).
« We replace y with (y — k).

Standard Form for the Equation of an Ellipse (with Center at (A, k))

For a horizontal ellipse, it is:

G-h? | G-k
2 b2

=1, where a > b.
a

For a vertical ellipse, it is:

(x=h)> (y-k)*
+

b2 a?

=1, where a > b.
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PART I: AN EXAMPLE

Example 3 (Finding Standard Form; Ellipse with Center at (h, k))

Consider the ellipse given by 9x2 + 4y2 —54x+40y +37=0.
Find the standard form of the equation of this ellipse.

§ Solution
Ox?+4y>—54x +40y +37=0

* Group the terms containing x, and group the terms containing y.
* Isolate constant terms on the right-hand side.

(9x2=54x) +(4y2+40y) = =37
» Factor the leading coefficients out of each group. (Fractions may result.)
o(x2-6x) +4(y2+10y) = =37

* Complete the square (CTS) within each pair of parentheses.
* Balance the equation.

For instance, to CTS within the “new x group,” (x2 - 6x):
o« Take the coefficient of x, —6.
e Halve it, resulting in —3.
s Square the result. We obtain +9.
e« Add the +9 to the group.

We obtain the Perfect Square Trinomial (PST): (x2 —6x + 9).

WARNING 2: Remember to balance the equation properly.

Do not ignore the impact of the leading coefficients, 9 and 4.

For instance, when +9 is inserted in the “new x group,” then 9(9), or
81, is being added to the left-hand side. This must be balanced out by
adding 9(9), or 81, to the right-hand side.

9(x2—6x +9) +4(y2+ 10y +25) = =37 +9(9) +4(25)
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» Factor the PSTs as squares of binomials. For instance, observe that =3 is
half of —6, the coefficient of x in (x2 —6x + 9).

9(x—3)2+4(y+5)*= 144

* Divide both sides of the equation by the constant term on the right-hand
side. This ensures that “1” is isolated on the right-hand side.

o(x—-3)> 4(y+5)?
+ =1

144 144
(x=3)*  (y+5)°
+ =1
16 36

Note: We were fortunate here because 144 was divisible by both 9 and
4. If we had had, say,

o(x—-3)> 4(y+5)?
+ =
143 143

then we should observe that, when we multiply by a nonzero number,
we are dividing by its reciprocal. For instance, when we multiply

9 143
(x=3)? by E, we are dividing (x —3)2 by T

(=3P, (+9° _
143 143
9 4
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Example 4 (Finding the Center; Revisiting Example 3)

(x-3)*  (y+5)°
+ =1
16 36

Find the center of the ellipse given by

in Example 3.

¢ Solution
The center of the ellipse is at (3, =5).

WARNING 3: Beware of signs. The same trick we used for circles works
here. Ask, “What makes the left-hand side equal to 0?”

(x —h)2 (y —k)2
+ =1,
b? a?
(x —3) is of the form (x — ), where h =3, and
(y+5),0r (y=(=5)), is of the form (y — k), where k= = 5. §

Observe that in the standard form



(Section 10.3: Ellipses) 10.3.15

Example 5 (Finding the Vertices; Revisiting Example 3)

(=3P (+9° _
16 36

1

Find the vertices of the ellipse given by

in Example 3.

§ Solution

« The larger denominator is 36, so a>=36and a =6.

» Because the larger denominator is below the (y + 5)2 the ellipse is
vertical (“y-long”), and the major and

» Therefore, one vertex lies 6 units directly above the center, (3, —5);
the other vertex lies 6 units directly below the center.

* For a vertical ellipse, the vertices and the center all share the same
x-coordinates. The y-coordinate of the center (—5) is to be shifted 6 units
up and 6 units down to get the y-coordinates of the vertices. This may
remind you of the PCAPIA / Frame Method for graphing trigonometric
functions in Chapter 4.

* The vertices are at (3,1) and (3, —11).

ecenter

=11}

vertex
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Example 6 (Finding the Co-vertices; Revisiting Example 3)

(x-3)°  (y+5)?
+ =1
16 36

Find the co-vertices of the ellipse given by
in Example 3.

§ Solution

« The smaller denominator is 16, so b2 =16and b =4.

» We know that the ellipse is vertical (“y-long”), so the minor and
semiminor axes are horizontal.

WARNING 4: Which coordinate do we shift? To move from the center to
the co-vertices, we move along the minor axis. This is different from

moving from the center to the vertices or to the foci; these involve moving
along the major axis.

* Therefore, one co-vertex lies 4 units directly to the right of the center,
(3, —5); the other lies 4 units directly to the left of the center.

* For a vertical ellipse, the co-vertices and the center all share the same
y-coordinates. The x-coordinate of the center (3) is to be increased by 4
units and decreased by 4 units to get the x-coordinates of the co-vertices.

* The co-vertices are at (7, =5) and (-1, =5).

y
TN X
-1 3 7
center
co-vertex co-vertex
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Example 7 (Finding the Foci; Revisiting Example 3)

(x-3)*  (y+5)°
+ =1
16 36

Find the foci of the ellipse given by

in Example 3.

§ Solution

* Find ¢, the distance between the center and the foci.

2 =4a%-b%2=36-16=20 >

c =20 = /45 =2./5

* Locating the foci is similar to locating the vertices, except that we move ¢

units away from the center instead of @ units.

» We know that the ellipse is vertical (“y-long”), so the major axis is
vertical.

* The center, vertices, and foci all share the same x-coordinate.

* The y-coordinate of the center (—5) is to be shifted 2\/§ units up and
2\/§ units down to get the y-coordinates of the foci.

* The foci are at (3, -5+ 2\/§) and (3, -5 —2\/§).
These are approximately at: (3, —0.53) and (3, —9.47).

\
c:2\/§

e center

-
—

c:2x/€
Y




(Section 10.3: Ellipses) 10.3.18

Example 8 (Finding the Eccentricity,; Revisiting Example 3)
(x-3)? (y+5)?
+ =1

Find the eccentricity of the ellipse given by

16 36
in Example 3.
¢ Solution
o c 245 5
* The eccentricity e = — = = ~0.745
a 6 3

* Note that ¢ is about 75% of « in the figure below.

y
1l vertex
5+ 2V5 : X
focus
C
5r e center

-5-2+5
-1t

vertex

$

PART J: REFLECTIVE PROPERTIES and APPLICATIONS

These videos demonstrate the reflective properties of ellipses and their
applications:

e Animation:
https://www.youtube.com/shorts/5V-TL1 WW1tl4

* An elliptical pool table:
https://www.youtube.com/watch?v=4KHCuXN2F3]

 National Statuary Hall at the U.S. Capitol. John Quincy Adams made

good use of the reflective property when eavesdropping on rivals!
https://www.youtube.com/watch?v=FX6rUU_74kk

* Lithotripsy. This common medical procedure uses shock waves (sound

waves) to break up kidney stones without harming surrounding tissue.
http://mathcentral.uregina.ca/beyond/articles/Lithotripsy/lithotripsy1.html
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PART K: KEPLER’S LAWS

» Kepler’s First Law of planetary motion states that each planet in our solar
system travels in an elliptical orbit about the Sun, which is at one focus.
(Earth’s orbit has an eccentricity of about 0.0167.)

» Kepler’s Second Law states that, if we imagine a line connecting the Sun and a
planet, then this line sweeps out equal areas in equal time intervals.

» Kepler’s Third Law relates the orbital period of a planet (its “year”) to the
semimajor axis of the orbit.

For more:

* From NASA:
https://solarsystem.nasa.gov/resources/310/orbits-and-keplers-laws/

» Wikipedia:
https://en.wikipedia.org/wiki/Kepler%27s_laws_of planetary motion

* Animation:
https://www.youtube.com/watch?v=Dvoe8Ib5D10o

Comets also travel in elliptical orbits, although some may travel in parabolic or
hyperbolic orbits.

* Halley’s comet has an eccentricity of about 0.967, and it takes about 76
years to complete one orbit around the sun.

* From NASA:
https://nssdc.gsfc.nasa.gov/planetary/factsheet/cometfact.html
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FOOTNOTES

1. Deriving the equation of a basic ellipse; Formula for locating foci.
See https://mathworld.wolfram.com/Ellipse.html for all this and more.
Thanks to Pat McKeague for the approach in Part F.

2. Equations of the ellipses in Part G.

22
. . ..X
For a horizontal ellipse centered at the origin, —+ y—2 =1
a b

2

Set b =1 so that the co-vertices are at (0, 1) and (0, —1). We then have: x_2 +y?=1.
a

For a desired value of e, what should a2 be? We need to express ¢ in terms of e.

c c 5 c?
e=—,50a=—and g°-=—.
a e e?
Since ¢2=qg?—pb%and b =1, we have c2=qg2—1.
5 c? ) a’-1
Then, g“=— becomes g~ = .
2 2
e e
1

Solving for a2 we obtain: %= =
l—e

2

. oX .
The equation —+ y% =1 can then be written as:
a

+y?=1 (in standard form), or
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SECTION 10.4: HYPERBOLAS

LEARNING OBJECTIVES

* Know the locus (geometric) definition of a hyperbola.
* Obtain standard form for the equation of a hyperbola.
* Locate the center, vertices, and foci of a hyperbola.

* Find the equations of the asymptotes of a hyperbola.

* Find the eccentricity of a hyperbola.

PART A: DISCUSSION

» Geometrically, a hyperbola is also determined by two points (the foci) in a plane.

* A hyperbola consists of two branches, and they approach the two asymptotes
of the hyperbola.

* The terminology used for a hyperbola is not as consistent across sources as for
an ellipse.

 The eccentricity of a hyperbola helps describe its shape.

 The standard form of the equation of a hyperbola can be used to find the center,
foci, vertices, eccentricity, as well as the asymptotes of the hyperbola.
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PART B: FAMOUS HYPERBOLAS

« The graph of x?— y? =1 is the most famous horizontal hyperbola.
Its branches open horizontally.

We will call the green square the central box of the hyperbola.
(For other hyperbolas, this will be a rectangle.)

The dashed green asymptotes are drawn through the diagonals of this box.

* The graph of y2 — x2 =1 is the most famous vertical hyperbola.
Its branches open vertically.

* The graph of y = —, or xy = 1, which we discussed in Section 1.3, is a rotated
X

hyperbola. The asymptotes lie on the coordinate axes.

Note: It is obtained by rotating the hyperbola given by x2— y2 =2, or

x2 2

7 - 7 = ] (in standard form), counterclockwise about the origin by 45°.
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PART C: THE LOCUS (GEOMETRIC) DEFINITION OF A HYPERBOLA

A hyperbola consists of all points whose absolute value of the difference of
distances from two fixed points (the foci) in a plane stays constant.

Below, = |d3—d4|:

* A video on how to construct a hyperbola is here:
https://www.youtube.com/watch?v=H8NwiZFS7B0

 Note: As for ellipses, we will denote the distance between the vertices as 2a.
Although = |d 37 d4| = 2a, this observation is not as helpful for

hyperbolas as the observation =d .t al4 =2a was for ellipses.
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PART D: TERMINOLOGY

focus center focus

-
vertex vertex
- -
transverse axis

* The vertices of a hyperbola are the two points on the two branches that are
closest to each other.

» We will call the line segment connecting the two vertices (as endpoints) the
transverse axis. It is the “shortest distance” between the two branches of the

hyperbola.

WARNING 1: Terminology for hyperbolas is inconsistent across
sources. Some sources say that the transverse axis is an infinite line, not just
a line segment. Some sources use the term major axis for either the line or
the line segment that we will call the transverse axis. One drawback to using
the term major axis here is that, for a hyperbola, the major axis might be
shorter than the minor axis, which can be confusing.

* The center of a hyperbola is the midpoint of the transverse axis.

* As for an ellipse, the vertices and the foci are symmetric about the center.
All those points lie on the same line, the line that contains the transverse axis.

WARNING 2:
* Unlike for an ellipse, for a hyperbola, the foci are further from the center than
the vertices are.
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ertex,
’

U4

4
/ co-vertex

/7 transverse axis

 The two branches of the hyperbola approach two asymptotes.

* The central box of the hyperbola is the rectangle or square with the same center
as the hyperbola and with diagonals lying on the asymptotes.

* The vertices lie on the central box; they are the midpoints of opposing sides of
the box.

 The conjugate axis of the hyperbola is the line segment with these properties:

e« [t is perpendicular to the transverse axis.
*« [t passes through the center of the hyperbola (and of the central box).

*« [ts endpoints (sometimes called the co-vertices) lie on the central box;
they are the midpoints of opposing sides of the box.

WARNING 3: The co-vertices do not lie on the hyperbola itself.

* The semi-transverse axis is half of the transverse axis.

» The semi-conjugate axis is half of the conjugate axis.
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PART E: NOTATION; HORIZONTAL and VERTICAL HYPERBOLAS

Standard Notation for Lengths and Distances Related to a Hyperbola

a = semi-transverse axis
2a = transverse axis

b = semi-conjugate axis
2b = conjugate axis

¢ = distance from the center to each focus

We assume that a, b, ¢ > 0.

Below, the blue points are the vertices. The purple points are the co-vertices.

Horizontal Hyperbola

A horizontal hyperbola opens horizontally and has a horizontal transverse

focus center 4
@ \

A vertical hyperbola opens vertically has a vertical transverse axis.

A A M
MR , focus
“~ 4
N 4

axis.

Vertical Hyperbola

S
N ’
N ’ 3
[N ’ \
—n—9o9 - @ center
~ ~e A
’ LN
’ . :
’ (N
, .
’ N
’ LN
’ < ——— —— N focus
, ’ b b \
-— .
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PART F: FORMULA FOR LOCATING FOCI

Formula for Locating the Foci of a Hyperbola (Finding ¢)

c2=a%+ b2

WARNING 4: Signs. Unlike the formula for ellipses, this looks like the usual
form of the Pythagorean Theorem. Ironically, it is harder to explain!
(See Footnote 1.)

(Remember that a, b, ¢ > 0.) Note that ¢2> 2 and ¢ > «.. This makes sense,
since the foci are further away from the center than the vertices are.

c turns out to be half the length of a diagonal of the central box.

PART G: ECCENTRICITY

The eccentricity of a hyperbola is denoted by e and is again given by:

e=—
a

For a hyperbola, e > 1.

For a hyperbola, we already know (see Part F):

c>a
Divide both parts by a:
c a

a a

e > 1
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Comparing Eccentricities of Hyperbolas:

The higher e is, the more the branches are pulled away from the line
containing the transverse axis.

For the hyperbola below, e =1.2.
c 18 120% of «. That is, the distance between each focus and the center 1s
120% of the distance between each vertex and the center.

e=1.2

For the hyperbola below, e = \/5 ~ 1.4. (c 1s about 140% of «.)
In fact, this is the graph of x2— y2 =1.

ex~1.4

y

>;

For the hyperbola below, e = 3. (c is three times «.)
e=3

If you’re curious, see Footnote 2 on the equations of these hyperbolas.
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PART H: STANDARD FORM FOR THE EQUATION OF A HYPERBOLA;

EQUATIONS OF ASYMPTOTES

Standard Form for the Equation of a Hyperbola (with Center at (0,0)):

Equations of Asymptotes

For a horizontal hyperbola, it is:

x2

a2

y=

For a vertical hyperbola, it is:

y2

a2

y:

— =]

and the asymptotes are given by:

——— =

and the asymptotes are given by:

y2

b2=

T —x
a

x2

b2=

a
+—x
b

WARNING 5: The patterns are different from the ones for ellipses.

« If x21is in the term on the left of the minus sign (=), then we have a

horizontal hyperbola.

o If y2 is in the term on the left of the minus sign (—), then we have a

vertical hyperbola.

« In both cases, a2 is the denominator of the fraction to the left of the minus

sign (-).
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Notes on Asymptotes:

b
* The “+” symbol can be ambiguous. In this section, “y = £ —Xx” means that
a
b b
y = —Xx gives one asymptote and y = — —x gives the other.
a a
rise Ay
* Remember that slope = —— = ——.
run  Ax
x2 2
For the horizontal hyperbola 5= 1, think of b as the “y-partner”
a b
y — partner b
and a as the “x-partner.” The asymptotes have slopes +t —— =+ —.
X —partner a
y2 x2
For the vertical hyperbola 5= 1, think of a as the “y-partner”
a b
y — partner a
and b as the “x-partner.” The asymptotes have slopes +t —— = + —,
X — partner b
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Example 1 (Standard Form; Horizontal Hyperbola with Center at (0,0))
Xy
The graph of E - 7 =1 is below.

« x2is in the term on the left of the minus sign (—), so we have a horizontal

hyperbola.

* 9 is the denominator of the fraction to the left of the minus sign (—), so
a*=9and g =3.

* If we set y =(, we see that the x-intercepts are at (—3,0) and (3,0).
This makes sense, since we have a horizontal hyperbola with center at (0, 0)
and a =3.

* [f we set x =0, we see that there are no y-intercepts.

* 4 is the denominator of the fraction to the right of the minus sign (-), so
b%=4and b =2. This helps us find the co-vertices and central box of the
hyperbola.

* For this horizontal hyperbola, the asymptotes are given by:

Il
I+

SSHIESEESTINE

y X

Il
I+
e

y

For the slopes, think: + ——— =%

y — partner b
X — partner a

2
=+ —,
_3§
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Example 2 (Standard Form,; Vertical Hyperbola with Center at (0,0))
yvooxr
The graph of ? - 7 =1 is below.

/
\
;23] .

’ b=2\_

. y2 is in the term on the left of the minus sign (—), so we have a vertical

hyperbola.

* 9 is the denominator of the fraction to the left of the minus sign (—), so
a’=9and g =3.

* If we set y =(, we see that there are no x-intercepts.

* [f we set x =0, we see that the y-intercepts are at (0, —3) and (0, 3).
This makes sense, since we have a vertical hyperbola with center at (0, 0)
and g =3.

* 4 is the denominator of the fraction to the right of the minus sign (-), so
b%=4and b =2. This helps us find the co-vertices and central box of the
hyperbola.

* For this vertical hyperbola, the asymptotes are given by:

a
=+ —x
YT b
3
=+ —x
YT
. y — partner a 3
For the slopes, think: + ————=+—=+—.§
X — partner b 2



(Section 10.4: Hyperbolas) 10.4.13

2 2
X
In the figure below, compare the graphs of ? - yj =1 (a hyperbola) and

x2 2

y
— + — =] (an ellipse).
o T2 ( pse)

* Since g > b for the hyperbola, the hyperbola and the ellipse have the same
vertices and the same co-vertices.

* If a = b, then we get a circle instead of an ellipse.

* If a < b, then the vertices of the hyperbola are the co-vertices of the
ellipse.

2 2
X
In the figure below, we compare the graphs of % - Z =1 (a hyperbola) and
¥ x2 | on ellipse
— + — =1 (an ellipse).
9 " 4 b
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To translate the hyperbola so that the new center is at (%, k), use Section 1.4,
Part F on translations through coordinate shifts. See also Section 0.13 on circles
and Section 10.3 on ellipses.

 We replace x with (x — k).
« We replace y with (y — k).

Standard Form for the Equation of a Hyperbola (with Center at (4. k));
Equations of Asymptotes

For a horizontal hyperbola, it is:
(x=h)*  (y—k)’
a’ b?

1

and the asymptotes are given by:
b
y—k=+% —(x-h)
a

b
y=ki—(x—h)
a

For a vertical hyperbola, it is:
(y-k)*  (x-h) |

a’ b2

and the asymptotes are given by:

a
y—k= i;(x—h)

a
y=ki;(x—h)
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PART I: AN EXAMPLE

Example 3 (Finding Standard Form; Hyperbola with Center at (h, k))

Consider the hyperbola given by yZ—4x2— 12y — 16x + 16 =0.
Find the standard form of the equation of this hyperbola.

¢ Solution
y2—4x2 =12y —16x+16=0

* Group the terms containing x, and group the terms containing y.
* Since y2 has a positive leading coefficient, let’s start with the “y group.”
* Isolate constant terms on the right-hand side.

(yz— 12y) +(—4x2— 16x) =-16

WARNING 6: Signs. Start by separating the two groups with a plus
sign (+). Students often make mistakes when trying to factor out a
(—1) mentally.

» Factor the leading coefficients out of each group. (Fractions may result.)
We are fortunate that the leading coefficient for the “y group” here is 1.

(y2-12y) -4(x>+4x) = - 16

WARNING 7: Signs. Watch your signs when factoring!

* Complete the square (CTS) within each pair of parentheses.
* Balance the equation.

For instance, to CTS within the “new y group,” (y2 - 12y):
o« Take the coefficient of y, —12.
e Halve it, resulting in —6.
s Square the result. We obtain +36.
*« Add the +36 to the group.
We obtain the Perfect Square Trinomial (PST):

(y2-12y +36).
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WARNING 8: Remember to balance the equation properly.
Consider the leading coefficients (1 and —4 here).

For instance, when +4 is inserted in the “new x group,” then —4(4), or
—16, is being added to the left-hand side. This must be balanced out
by adding —4(4), or —16, to the right-hand side.

(y2_12y+36)—4(x2+4x+4) = —16+36_4(4)

* Factor the PSTs as squares of binomials. For instance, observe that —6 is
half of —12, the coefficient of y in (y2 - 12y + 36).

(y-6)*—4(x+2)*=4

* Divide both sides of the equation by the constant term on the right-hand
side. This ensures that “1” is isolated on the right-hand side.

(y-6)° 4x+22_1

4 4
(y-6)* (x+2)?
- =1, or
4 1
_62
(y4 ) —(x+2)%=1

Note 1: Sometimes, we should observe that, when we multiply by a
nonzero number, we are dividing by its reciprocal. For instance, if
we had had (y — 6)% —4(x +2)? =5 (instead of 4):
(y—-6)*-4(x+2)*=5
(-6 4l+2)”
5 5

4 5
When we multiply (x +2)? by g, we are dividing (x +2)? by Z

(=6 (x+2)
s 5 !

4
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Note 2 / WARNING 9: Signs. If we had ended up with a negative
number on the right-hand side, then we would need to do some
rearranging to obtain standard form.

For instance, if we had had (y —6)? —4(x +2)?= —4 (instead of 4):

(y=6)*—4(x+2)*= -4
(-6 4+2)”

—4 —4
(y-6)* (x+2)?
T T T
(x+2)* (y-6)*
.4 !

$

Example 4 (Finding the Center; Revisiting Example 3)

(y-6)? (x+2)*
;1 !

Find the center of the hyperbola given by

in Example 3.

¢ Solution
The center of the hyperbola is at (=2, 6).

WARNING 10: Order of coordinates. The same trick we used for circles
and ellipses works here. Ask, “What makes the left-hand side equal to 07”
Since this is a vertical hyperbola, it is a common error to switch the

x- and y-coordinates and write (6, —2).

(y-k)? (x=h)?
- =1
a b2
(x+2), or (x =(=2)), is of the form (x — &), where h = —2, and
(y—6) is of the form (y — k), where k =6. §

Observe that in the standard form

b
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Example 5 (Finding the Vertices; Revisiting Example 3)

. . (y-6)* (x+2)°
Find the vertices of the hyperbola given by 1 - ] =1

in Example 3.

§ Solution

« (y —6)?is in the term on the left of the minus sign (—), so the hyperbola is
vertical, and the transverse and

* 4 is the denominator of the fraction to the left of the minus sign (—), so
a’=4anda=2
* Therefore, one vertex lies 2 units directly above the center, (-2, 6);

the other vertex lies 2 units directly below the center.

* For a vertical hyperbola, the vertices and the center all share the same
x-coordinates. The y-coordinate of the center (6) is to be shifted 2 units up
and 2 units down to get the y-coordinates of the vertices. This may remind
you of the PCAPIA / Frame Method for graphing trigonometric functions in
Chapter 4.

* The vertices are at (=2, 8) and (-2, 4).

vertex
center @ 6}

vertex
At
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Example 6 (Finding the Co-vertices; Revisiting Example 3)
(y-6)?% (x+2)? |
4 1

Find the co-vertices of the hyperbola given by

in Example 3.

§ Solution

* We know that the hyperbola is vertical, so the conjugate and
semi-conjugate axes are horizontal.

« 1 is the denominator of the fraction to the right of the minus sign (-), so
b%=1and b = 1. This helps us find the co-vertices and central box of the
hyperbola.

WARNING 11: Which coordinate do we shift? To move from the center
to the co-vertices, we move along the conjugate axis. This is different from

moving from the center to the vertices or to the foci; these involve moving
along the transverse axis.

* Therefore, one co-vertex lies 1 unit directly to the right of the center,
(=2, 6); the other lies 1 unit directly to the left of the center.

* For a vertical hyperbola, the co-vertices and the center all share the same
y-coordinates. The x-coordinate of the center (—2) is to be increased by 1
unit and decreased by 1 unit to get the x-coordinates of the co-vertices.

* The co-vertices are at (—1,6) and (=3, 6).

co-vertex vertex




(Section 10.4: Hyperbolas) 10.4.20

Example 7 (Finding the Asymptotes; Revisiting Example 3)

: . (y-6)? (x+2)°
Find the asymptotes of the hyperbola given by 1 ] =1

in Example 3.

$ Solution

* For this vertical hyperbola, the asymptotes are given by:

a
—-k=x—(x-h
y e=h)
2
y—6= iT(x+2)
y—6= +2(x+2), or
y=6+2(x+2)
. y — partner a 2
For the slopes, think: + ————=+—=+—= 12
X — partner b 1
y
/
(
A
} a=2
J:l
} a=2
Y




(Section 10.4: Hyperbolas) 10.4.21

Example 8 (Finding the Foci; Revisiting Example 3)

. . (y-6)* (x+2)?
Find the foci of the hyperbola given by 1 - n =1

in Example 3.

§ Solution

* Find ¢, the distance between the center and the foci.

c2=a*+b>=4+1=5>

e 5

* Locating the foci is similar to locating the vertices, except that we move ¢
units away from the center instead of @ units.

» We know that the hyperbola is vertical, so the transverse axis is vertical.

» The center, vertices, and foci all share the same x-coordinate.

* The y-coordinate of the center (6) is to be shifted \/§ units up and
\/g units down to get the y-coordinates of the foci.

* The foci are at(—2, 6+\/§) and(—2, 6—\/3).

These are approximately at: (=2, 8.24) and (-2, 3.76).

y
fotius i 6+\/§
center ‘C - \/g
o 6
c=+5
foc.us | 6—\/§
/2 [\ ”
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Example 9 (Finding the Eccentricity,; Revisiting Example 3)

(=67 (x+2?

Find the eccentricity of the hyperbola given by

4 1
in Example 3.
¢ Solution
c 5
* The eccentricity e = — = £ ~1.12
a 2
* Note that ¢ is about 112% of « in the figure below.
y
focus ol 6_’_\/?
vertex |
center ‘ ¢
) 6F
vertex
4r
focus 6—\/?
/2 [\ *

$

PART J: REFLECTIVE PROPERTIES

These videos demonstrate the reflective properties of hyperbolas:

e Animations:

https://www.youtube.com/shorts/D9eRk6.PBFc
https://www.youtube.com/shorts/VXUIPunpysk
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PART K: APPLICATIONS (LORAN)

By the locus definition in Part C, for all pairs of points on the hyperbola,

= |d3—d4:

* Let’s say there are two tracking stations at the two foci. An explosion is heard,
and the station on the left hears it five milliseconds before the station on the right.

* It could be determined that the explosion happened somewhere on the left
branch of the above hyperbola.

* A third tracking station could be used to develop another hyperbolic branch,
and the intersection of the two branches could be the location of the explosion.

* LORAN (Long-Range Navigation) was a land-based navigation system
developed by M.I.T. during World War II. LORAN was based on these principles.
(Source: Encyclopedia Britannica, https://www.britannica.com/technology/loran)
See also: “Radlo Hlstory The Rlse Fall and Resurrectlon of LORAN.”

https:/blog.minicircuits. radio-history-the-birth-death-and-resurrection-of-lor ~:text=LORAN%20was%20d bsolete%20in%202009%20and%20d; issioned%20in%202010

PART L: OTHER APPLICATIONS

» Hyperbolic and parabolic mirrors are used in telescopes due to their reflective
properties.

» Most cooling towers at nuclear power plants are in the shape of hyperboloids. A
hyperboloid is a three-dimensional surface obtained by revolving a hyperbola
about its conjugate axis (treated as an infinite line). See the Duke Energy
communication at:

https:/nuclear.duke-energy.com/2021/10/14/cooling-towers-what-are-th ind-how-do-they-work#:~:text=The%20shape%200f%20most% ling.laden%20air%20into%20the%20:
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FOOTNOTES

1. Deriving the equation of a basic hyperbola; Formula for locating foci.
See https://mathworld.wolfram.com/Hyperbola.html for this and more.
See https://mathworld.wolfram.com/Ellipse.html for a similar analysis for ellipses.
Consider the left branch of the hyperbola below; the right branch leads to the same equation.

N

y

(-¢,0) (c.0)

d,~d,=2a

\/(x—c)2+y2— \/(x+c)2+y2=2a
(x=0)24yr=2a+/(x+c)%+y? =
(\/ (x—c)2+y2)2=(2a+\/ (x+c)2+y2>2
(x=c) 2+ y?=4a’+4a\/ (x+¢) 2+ Y2+ (x+¢) 2+ )7
(x—c) 2=4a>+4a/ (x+¢) 2+ y2 + (x+c) 2
x?=2cx+c’=4a’+ 4a\/m+x2+ 2ex+c?
—2cx=4a’+ 4a\/m+ 2cx
—dex=4a’+4a\[ (x+c) 2+ y?
~crmat+aGrOTTY
—cx—az:a\/ﬁz-l-y2 =

(-or—a?)2=(ay/(x+ ) 2432)?
22+ 2a2cx+ a*=a¥ (x+¢) 2+ y?)
c2x2+ 2a%cx + a4=a2(x2+ 2cx+ ¢+ y2)
22+ 2a%cx+ a*=a%x2+ 2a%cx+ a%c?+ a?y?
cZx?+ a*=a’%+ a%c?+ a%y?
2

2 2

X —a“x —a2y2=a202—a4

xz(cz_ az) —aXy?2=q22- g*
xY 2= a?) —a>y2=ac?2-a?)
Let »h2=c¢2— 42 and therefore ¢2=a2+ b2
x2b2— a2y2=q2p?
Divide both sides by a2h2
X2 ay? a2
a’h?  a’h?  a?b?

x2 y2

2 b2

a
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2. Equations of the hyperbolas in Part G.

2 2
. .. X
For a horizontal hyperbola centered at the origin, — - X 1.

a b? -
2
Set a =1 so that the vertices are at (1,0) and (—1,0). We then have: x2- — =1
b
For a desired value of e, what should 5% be? We need to express b2 in terms of e.

c c
e = —. Since we set ¢ = 1, we have: ¢ = T =c.
a

Since ¢c2=a?+b%and a =1and e =c, we have e2=1+b2

Solving for b2 we obtain: p2=¢2—1.

2
The equation x?- y_2 =] can then be written as:
b




