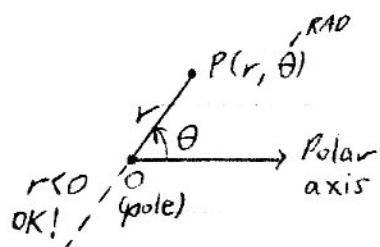


James Bern.
intro PG in 1691
but Newton
may have used lot
Lil 361: 1st suggested
by N (1671)

10.8: POLAR COORDS (PCs)

(A) PCs

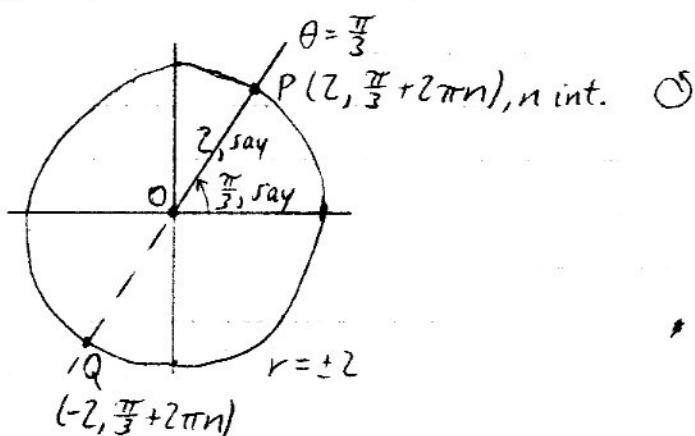
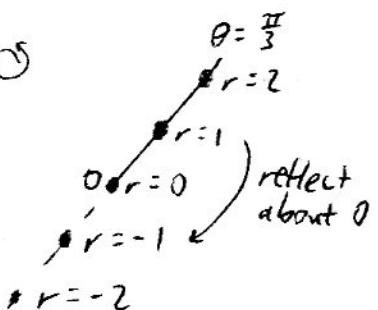
i) I've buried
a treasure
chest. You
can determine
2? r.
Rect (Cart. \rightarrow)
Michael Bolton fix.



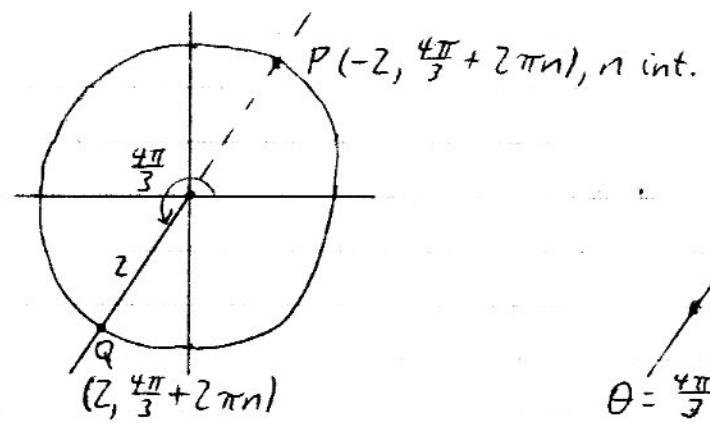
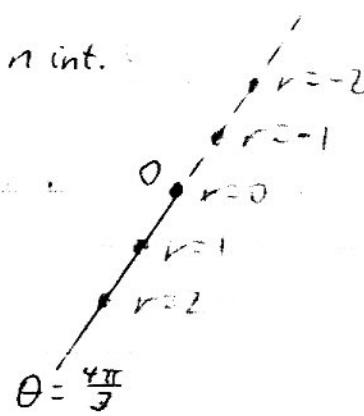
Pole O: $(0, \theta)$
any angle

P has ∞ many PC reps.

(Hand 1
graph $r=2$?
what pts have
 r -coord = 2?
What figures do
they form?



or



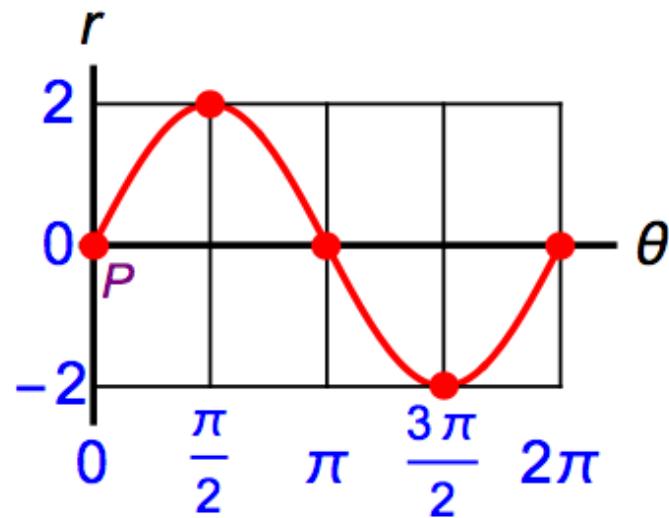
POLAR CURVES: SOME EXAMPLES

Example 1 (Graphing a Circle)

Sketch the graph of the polar equation $r = 2 \sin(\theta)$, where r and θ are polar coordinates.

§ Solution

First, graph r against θ as **Cartesian** coordinates. Graph one cycle of $r = 2 \sin(\theta)$.



$$r: 0 \rightarrow 2 \rightarrow 0 \rightarrow -2 \rightarrow 0$$

(1) (2) (3) (4)

Now, graph r and θ as **polar** coordinates.

Draw in Quadrant ...

As $\theta: 0 \rightarrow \frac{\pi}{2}$, $r: 0 \rightarrow 2$. (Phase 1) I

As $\theta: \frac{\pi}{2} \rightarrow \pi$, $r: 2 \rightarrow 0$. (Phase 2) II

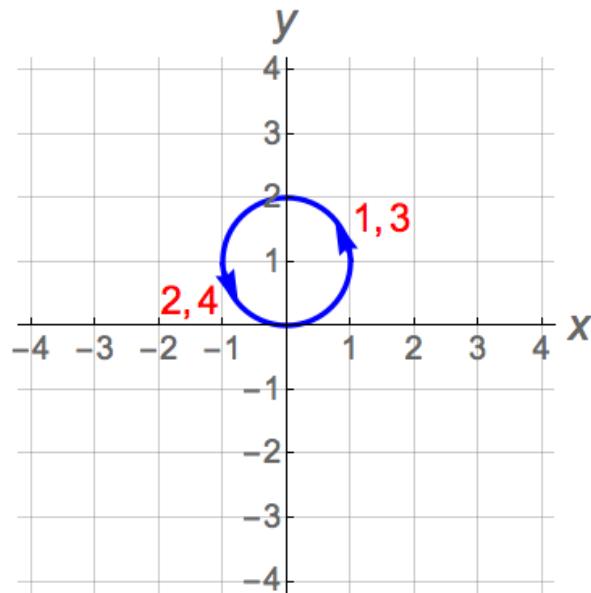
As $\theta: \pi \rightarrow \frac{3\pi}{2}$, $r: 0 \rightarrow -2$. (Phase 3) I (not III, because $r \leq 0$)

As $\theta: \frac{3\pi}{2} \rightarrow 2\pi$, $r: -2 \rightarrow 0$. (Phase 4) II (not IV, because $r \leq 0$)

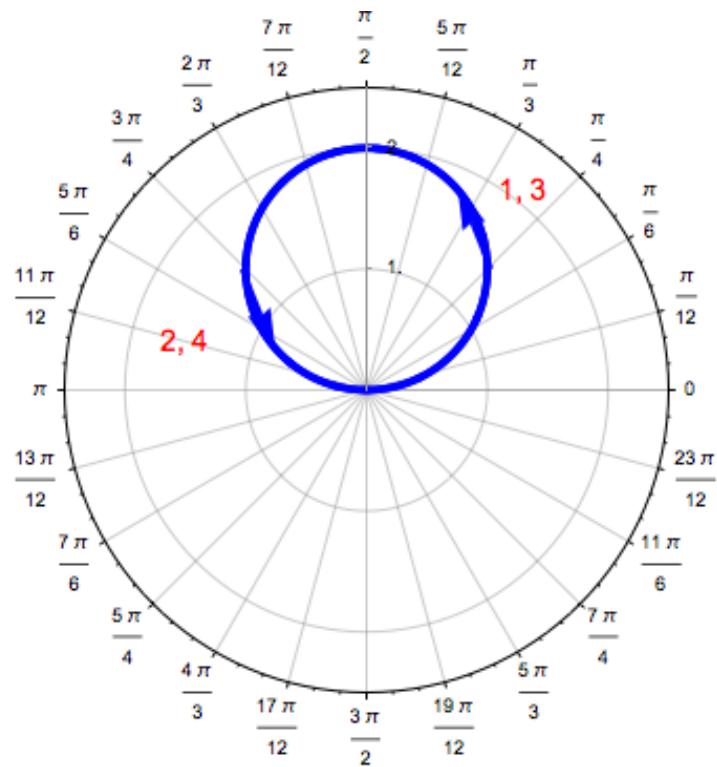
A “new phase” should be started whenever:

- θ changes Quadrant.
- r changes direction (from increasing to decreasing, or vice-versa).
- r changes sign.

Here is the polar curve using **Cartesian** graph paper:



Here is the polar curve using **polar** graph paper:



Obtaining the equation of the circle in Cartesian coordinates:

$$r = 2 \sin(\theta) \Rightarrow (\text{Multiply both sides by } r.)$$

$$r^2 = 2r \sin(\theta)$$

We need not exclude the case $r = 0$, since 0 is in the range of the $2 \sin(\theta)$ function. The **pole (origin)**, which corresponds to $r = 0$, lies on the graph.

$$x^2 + y^2 = 2y$$

$$x^2 + y^2 - 2y = 0$$

$$x^2 + (y^2 - 2y + 1) = 0 + 1 \quad (\text{CTS and balance.})$$

$$x^2 + (y - 1)^2 = 1$$

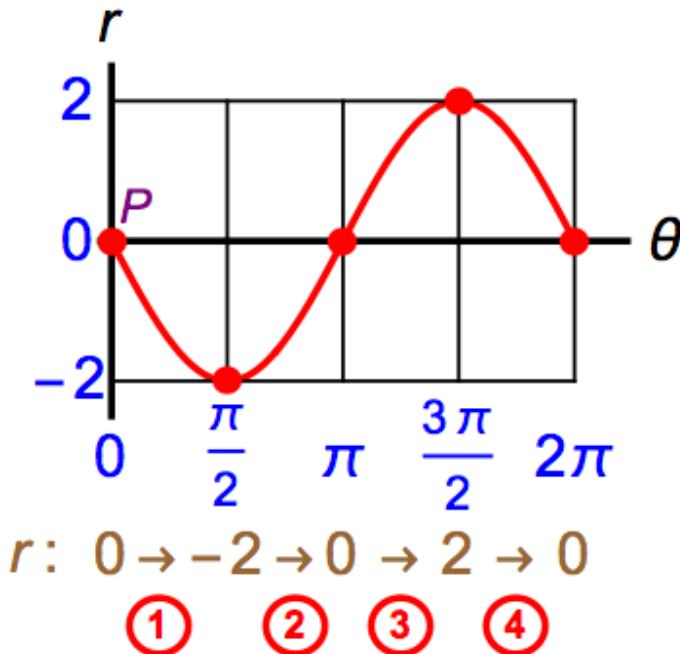
We have a **circle** of radius 1 centered at $(0, 1)$. However, this analysis does **not** indicate **orientation**. §

Example 2 (Graphing a Circle)

Sketch the graph of the polar equation $r = -2 \sin(\theta)$, where r and θ are polar coordinates.

§ Solution

First, graph r against θ as **Cartesian** coordinates. Graph one cycle of $r = -2 \sin(\theta)$.



Now, graph r and θ as **polar** coordinates.

Draw in Quadrant ...

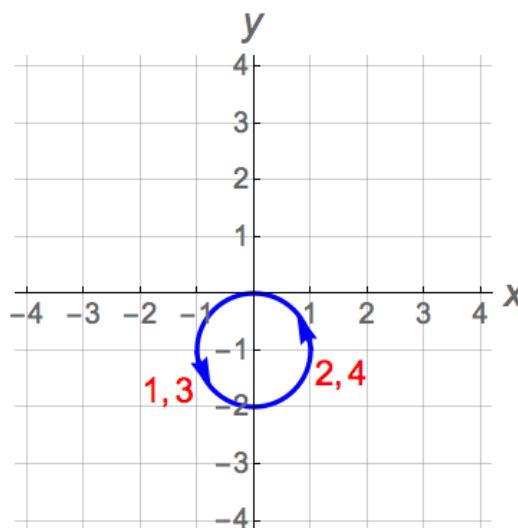
As $\theta : 0 \rightarrow \frac{\pi}{2}$, $r : 0 \rightarrow -2$. (Phase 1) III (not I, because $r \leq 0$)

As $\theta : \frac{\pi}{2} \rightarrow \pi$, $r : -2 \rightarrow 0$. (Phase 2) IV (not II, because $r \leq 0$)

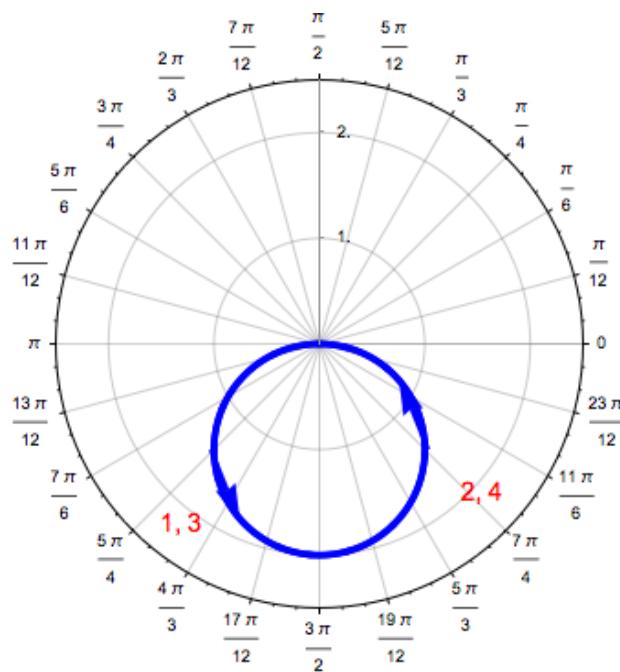
As $\theta : \pi \rightarrow \frac{3\pi}{2}$, $r : 0 \rightarrow 2$. (Phase 3) III

As $\theta : \frac{3\pi}{2} \rightarrow 2\pi$, $r : 2 \rightarrow 0$. (Phase 4) IV

Here is the polar curve using **Cartesian** graph paper:



Here is the polar curve using **polar** graph paper:



⑧ Graph of a Polar Eq.

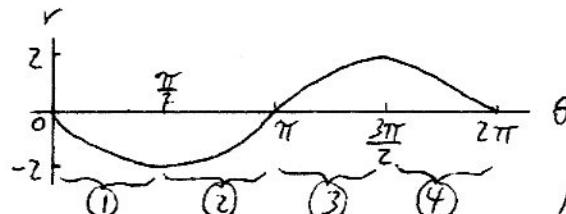
consists of all pts. (r, θ)
satisfy eq.

Usual form: r or $r^2 = f(\theta)$

Ex $r = -2 \sin \theta$

Stewart 673
"in Cartesian words"

Graph r vs. θ as Cartesian/rectangular coords.



$r: 0 \rightarrow -2 \rightarrow 0 \rightarrow 2 \rightarrow 0$

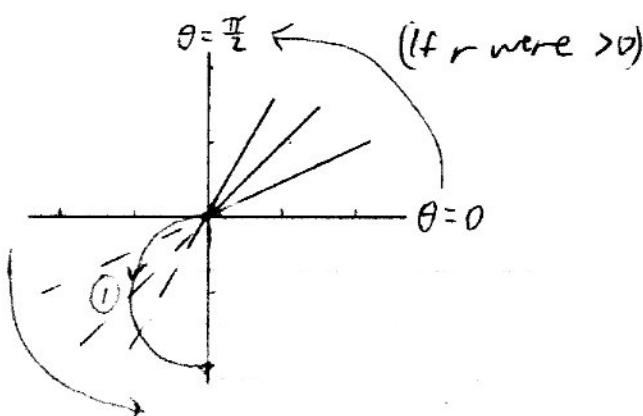
Here, "sectors" corresp.
to quadrants, but
be careful!

or Table:
$$\begin{array}{c|c} \theta & r \\ \hline 0 & -2 \sin(0) = 0 \\ \vdots & \end{array}$$

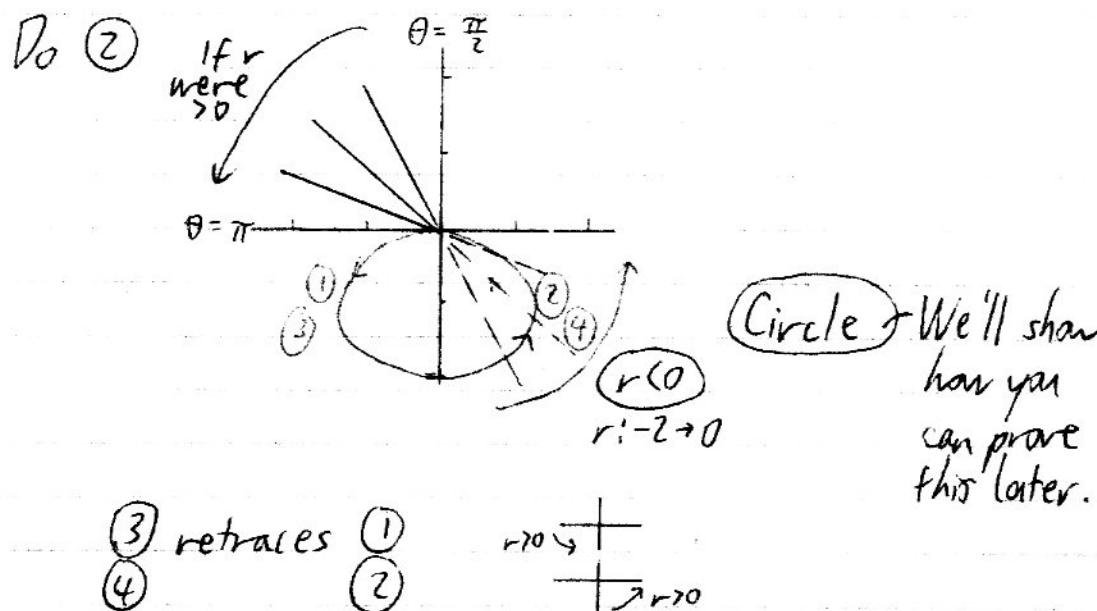
If $r > 0$, we'd
be going there
QI

Do ①

$r(0)$
 $r: 0 \rightarrow -2$

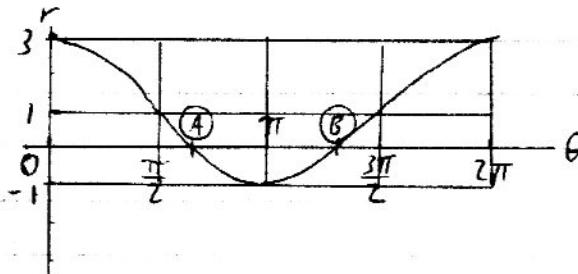


Trust me, it's
a half-circle
Recognize
basic forms



Ex $r = 1 + 2 \cos \theta$

Note:
 $-2 \leq 2 \cos \theta \leq 2$
 $-1 \leq 1 + 2 \cos \theta \leq 3$



$r: 3 \rightarrow 1 \rightarrow 0 \rightarrow -1 \rightarrow 0 \rightarrow 1 \rightarrow 3$

Find A, B

Sectors divided by:
 quadrants
 \nearrow vs. \searrow
 \nearrow vs. \searrow

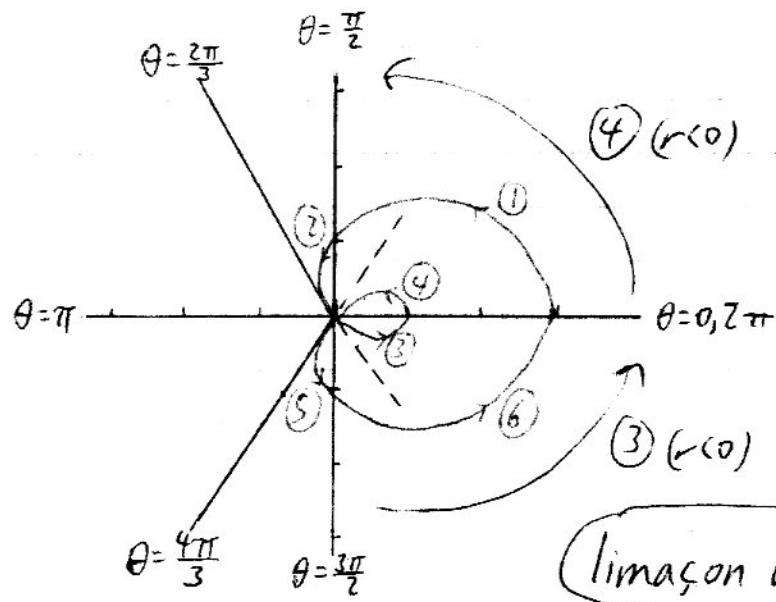
$$\theta = 1 + 2 \cos \theta$$

$$\cos \theta = -\frac{1}{2}$$

Directions

$A = \frac{2\pi}{3}$ \rightarrow $\frac{\pi}{3} : \cos = \frac{1}{2}$

$B = \frac{4\pi}{3}$



limaçon w/a loop

snail

Lee-muh-SOH~
Webster: locus etc.
frisbee
escargot?
prepared mail

Stewart 677

$$r = 1 + c \sin \theta$$

Me

$$r = 1 + a \cos \theta$$

$a = 1$ cardioid

$a > 1$: limaçon

$a < 1$: no loop

$\frac{1}{2}$ (a cut) dimple

$a < \frac{1}{2}$ no dimple

oval (a.k.a. 677: "convex")

$a \rightarrow 0$, circle

$$r = 1 + a \cos \theta$$

$$r = 1 + \cos \theta$$

cardioid "heart"

$$r = 1 + 0.7 \cos \theta$$

$$r = 1 + 0.7 \cos \theta$$

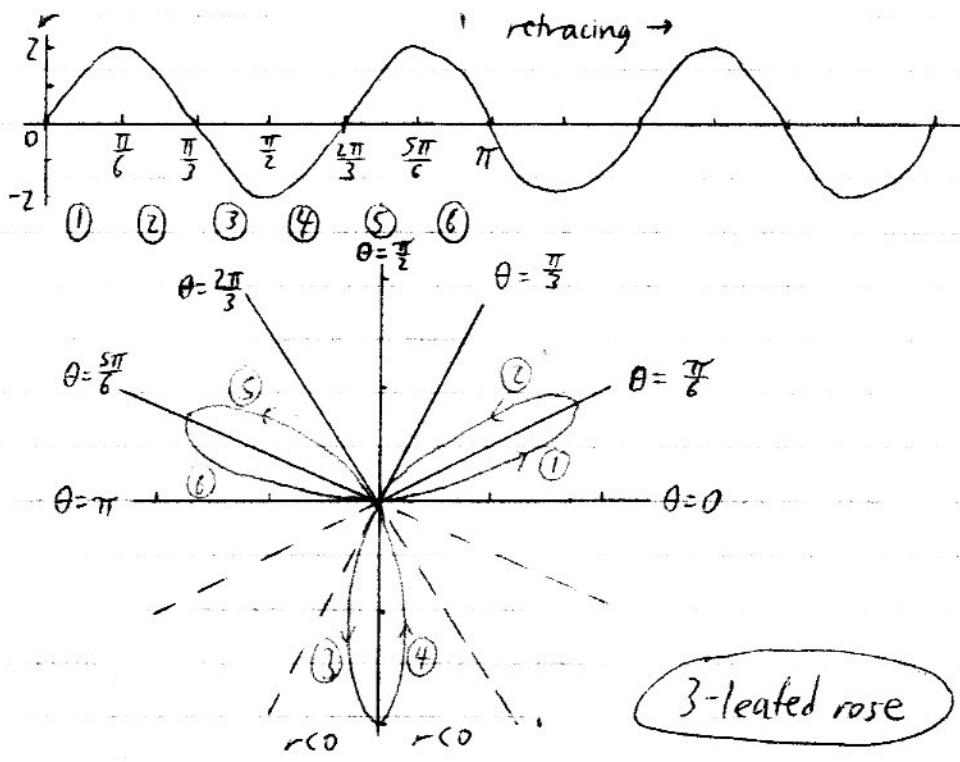
The evolution
of $r = 1 + a \cos \theta$

dimpled limaçon

$$r = 1 + 0.5 \cos \theta \quad (\text{loses dimple})$$

$$r = 1$$

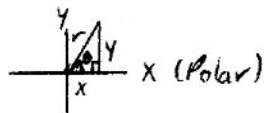
Circle!

Ex $r = 2 \sin(3\theta)$ 

$$r = a \frac{\sin(n\theta)}{\cos(n\theta)}$$

$a \neq 0$ if $n = 3, 5, 7, \dots \Rightarrow n$ leaves
 if $n = 2, 4, 6, \dots \Rightarrow 2n$ leaves

⑥ Polar Eq. \Leftrightarrow Rect. Eq.



$$r^2 = x^2 + y^2$$

$$\tan \theta = \frac{y}{x}, x \neq 0$$

+ Watch quadrant?

$$\cos \theta = \frac{x}{r} \Rightarrow$$

$$\sin \theta = \frac{y}{r} \Rightarrow$$

$$x = r \cos \theta$$

$$y = r \sin \theta$$

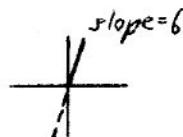
even if $r < 0$

Ex Find a polar eq. w/same graph as $y = 6x$

$$\frac{y}{x} = 6 \quad \text{Also, } (0,0)$$

$$\tan \theta = 6$$

$$\theta = \tan^{-1} 6$$



Ex Find a rect. eq. w/same graph as $r^2 \sin(2\theta) = 4$, and graph it.

$$r^2 (2 \sin \theta \cos \theta) = 4$$

$$2(r \sin \theta)(r \cos \theta) = 4$$

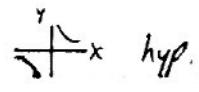
$$= y$$

$$= x$$

$$2xy = 4$$

$$xy = 2$$

$$y = \frac{2}{x}$$



Ex (again) $r = -2 \sin \theta$

$$r^2 = -2r \sin \theta$$

$$x^2 + y^2 = -2y$$

$$x^2 + y^2 + 2y = 0$$

$$x^2 + (y^2 + 2y + 1) = 1$$

$$x^2 + (y + 1)^2 = 1$$

✓ when
 $r \neq 0$

Circle w/center: $(0, -1)$

radius = 1

