CONIC SECTIONS

A video on conic sections may be found here:

https://www.youtube.com/watch?v=HO2zAU3Eppo

Some corrections:

- The definition of **directrix** in the video is not commonly accepted.
- A true cone technically has no "base"; it consists of two **nappes** of infinite surface area.

PARABOLAS: FOCUS AND DIRECTRIX

(These comments about parabolas will <u>not</u> be on the Final.)

LEARNING OBJECTIVES

- Know the locus (geometric) definition of a parabola.
- Locate the focus and directrix of a parabola.

PART A: THE LOCUS (GEOMETRIC) DEFINITION OF A PARABOLA

- A parabola consists of all points that are **equidistant** between a fixed point (called the <u>focus</u>) and a fixed line (called the <u>directrix</u>).
- The vertex of the parabola $y = x^2$, which is at (0,0), has **distance** $\frac{1}{4}$ from both the **focus** and the **directrix**.

• More generally, the **vertex** of the parabola $y = ax^2 (a > 0)$ has **distance** $\frac{1}{4a}$ from both the **focus** and the **directrix**.

• A video on how to **construct a parabola** is here; the **directrix** would be somewhere in the middle of the page, not at the bottom:

 $\underline{https://www.youtube.com/watch?v=M9g7jXrMyeo}$

POLAR CURVES: SOME EXAMPLES

Example 1 (Graphing a Circle)

Sketch the graph of the polar equation $r = 2\sin(\theta)$, where r and θ are polar coordinates.

§ Solution

First, graph r against θ as Cartesian coordinates. Graph one cycle of $r = 2\sin(\theta)$.

Now, graph r and θ as **polar** coordinates. Draw in Quadrant ...

As
$$\theta: 0 \to \frac{\pi}{2}$$
, $r: 0 \to 2$. (Phase 1) I

As
$$\theta: \frac{\pi}{2} \to \pi$$
, $r: 2 \to 0$. (Phase 2)

As
$$\theta: \pi \to \frac{3\pi}{2}$$
, $r: 0 \to -2$. (Phase 3) I (not III, because $r \le 0$)

As
$$\theta: \frac{3\pi}{2} \to 2\pi$$
, $r: -2 \to 0$. (Phase 4) II (not IV, because $r \le 0$)

A "new phase" should be started whenever:

- θ changes Quadrant.
- r changes direction (from increasing to decreasing, or vice-versa).
- r changes sign.

Here is the polar curve using Cartesian graph paper:

Here is the polar curve using **polar** graph paper:

Obtaining the equation of the circle in Cartesian coordinates:

$$r = 2\sin(\theta) \Rightarrow \text{(Multiply both sides by } r.\text{)}$$

$$r^2 = 2r\sin(\theta)$$

We need not exclude the case r = 0, since 0 is in the range of the $2\sin(\theta)$ function. The **pole (origin)**, which corresponds to r = 0, lies on the graph.

$$x^{2} + y^{2} = 2y$$

$$x^{2} + y^{2} - 2y = 0$$

$$x^{2} + (y^{2} - 2y + 1) = 0 + 1 \quad \text{(CTS and balance.)}$$

$$x^{2} + (y - 1)^{2} = 1$$

We have a **circle** of radius 1 centered at (0,1). However, this analysis does **not** indicate **orientation**. §

Example 2 (Graphing a Circle)

Sketch the graph of the polar equation $r = -2\sin(\theta)$, where r and θ are polar coordinates.

§ Solution

First, graph r against θ as **Cartesian** coordinates. Graph one cycle of $r = -2\sin(\theta)$.

Now, graph r and θ as **polar** coordinates. Draw in Quadrant ...

As
$$\theta: 0 \to \frac{\pi}{2}$$
, $r: 0 \to -2$. (Phase 1) III (not I, because $r \le 0$)

As
$$\theta: \frac{\pi}{2} \to \pi$$
, $r: -2 \to 0$. (Phase 2) IV (not II, because $r \le 0$)

As
$$\theta: \pi \to \frac{3\pi}{2}$$
, $r: 0 \to 2$. (Phase 3)

As
$$\theta: \frac{3\pi}{2} \to 2\pi$$
, $r: 2 \to 0$. (Phase 4) IV

Here is the polar curve using Cartesian graph paper:

Here is the polar curve using **polar** graph paper:

