R TUTORIAL, #13: NORMAL APPROXIMATIONS TO BINOMIAL DISTRIBUTIONS

The (>) symbol indicates something that you will type in. A bullet (•) indicates what the R program should output (and other comments).

FAIR COIN EXAMPLE (COUNT HEADS IN 100 FLIPS)

- We will obtain the table for $\text{Bin}\left(n = 100, \ p = \frac{1}{2}\right)$.

 > Type: probs = dbinom(0:100, size=100, prob=1/2)
 > Type: round(data.frame(0:100, probs), digits=5)

- We get the probabilities rounded to five decimal places.

- We can do a spike plot for the distribution.

 > Type: plot(0:100, probs, type="h", xlim=c(0,100), ylim=c(0,.1))
 > Type: points(0:100, probs, pch=16, cex=.5)

- We superimpose the density curve of the normal approximation.
 - ‘add=T’ adds the curve to the current plot.

- Find $P\left(45 \ \text{heads} \leq X \leq 55 \ \text{heads}\right)$.

 > Type: sum(dbinom(45:55, size=100, prob=1/2))

- What does the normal approximation (with continuity corrections) give us?

 > Type: pnorm(55.5, mean=50, sd=5) - pnorm(44.5, mean=50, sd=5)

- What if we hadn’t used continuity corrections?

 > Type: pnorm(55, mean=50, sd=5) - pnorm(45, mean=50, sd=5)
• Find $P(X \leq 45 \text{ heads})$.
 > Type: sum(dbinom(0:45, size=100, prob=1/2))

• What does the normal approximation (with continuity corrections) give us?
 > Type: pnorm(45.5, mean=50, sd=5)

• Find $P(X > 55 \text{ heads})$.
 > Type: sum(dbinom(56:100, size=100, prob=1/2))

• What does the normal approximation (with continuity corrections) give us?
 > Type: 1 - pnorm(55.5, mean=50, sd=5)

WHY SHOULD WE USE CONTINUITY CORRECTIONS?

• This is best illustrated by the distribution $\text{Bin}\left(n = 10, p = \frac{1}{2}\right)$, which is the "simplest" binomial distribution that is eligible for a normal approximation.
 > Type: probs2 = dbinom(0:10, size=10, prob=1/2)

• Let’s do a probability histogram for this distribution.
 • The ‘barplot’ command better suits our purposes.
 > Type: barplot(probs2, names.arg=c(0:10), space=0, xlim=c(0,10), ylim=c(0,0.3))
 • ‘space=0’ ensures that we do not have any spaces between our bars.
 Otherwise, our coordinate system get messed up.

• Let’s superimpose the approximating normal density curve.
 > Type: curve(dnorm((x-0.5), mean=5, sd=sqrt(2.5)), from=0, to=11, xlim = c(0,11), add=T, col="blue")
 • The ‘(x-0.5)’ indicates that we have to shift the curve horizontally by 0.5 units to accommodate the barplot.

• Find $P(3 \leq X \leq 7)$.
 > Type: sum(dbinom(3:7, size=10, prob=1/2))

• What does the normal approximation (with continuity corrections) give us?
 > Type: pnorm(7.5, mean=5, sd=sqrt(2.5)) - pnorm(2.5, mean=5, sd=sqrt(2.5))

• What if we hadn’t used continuity corrections?
 > Type: pnorm(7, mean=5, sd=sqrt(2.5)) - pnorm(3, mean=5, sd=sqrt(2.5))
 • Do you see from the plot why we are getting an underestimate?