LESSON 39: HYPOTHESIS TESTS for TWO POPULATIONS

How Do We Compare Two Populations?

PART A: MEANS FROM DEPENDENT SAMPLES: MATCHED PAIRS

A matched pair of data values may correspond to two different measures for one individual (as in Example 1 below), the same measures for a husband/wife couple, etc.

When comparing the means for the two measures, we perform our usual tests on the differences (d) between the measures for each matched pair.

The population data

Let D be the distribution of the population of differences between all the matched pairs.

Let μ_d be the mean of the D distribution.

The sample data

Let \bar{d} and s_d be the sample mean and the sample standard deviation, respectively, for the differences between the paired sample data values.

Let n be the number of matched pairs of sample data values.

Central Limit Theorem (CLT) Assumptions:

We require:

- $n > 30$, or
- D is approximately normally distributed.
Example 1 (Hypothesis Test for Means for Dependent Samples)

We take a random sample of three men from the participants in a men’s weight loss program. Use the sample data below to test the claim that participants in the program lose weight on average. Use a significance level of 0.05. Assume that the weight changes of the participants in the program are approximately normally distributed.

<table>
<thead>
<tr>
<th>Subject #</th>
<th>Before Weight (lbs.)</th>
<th>After Weight (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>230</td>
<td>225</td>
</tr>
<tr>
<td>2</td>
<td>250</td>
<td>248</td>
</tr>
<tr>
<td>3</td>
<td>210</td>
<td>211</td>
</tr>
</tbody>
</table>

Solution

We calculate the differences, \(d\), from the given table.

<table>
<thead>
<tr>
<th>Subject #</th>
<th>Before Weight (lbs.)</th>
<th>After Weight (lbs.)</th>
<th>Differences ((d) in lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>230</td>
<td>225</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>250</td>
<td>248</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>210</td>
<td>211</td>
<td>-1</td>
</tr>
</tbody>
</table>

Here, we take differences “Before” – “After.” More on this later.

Sample statistics:

\[
(n = 3) \\
\bar{d} = 2.0 \text{ lbs.} \\
s_d = 3.0 \text{ lbs.}
\]

Setup:

\[
H_0: \mu_d = 0 \text{ (lbs.)} \\
H_1: \mu_d > 0 \text{ (lbs.)} \quad (\Rightarrow \text{Right-tailed test}) \quad (\text{Claim}) \\
\alpha = 0.05
\]
Observe that a positive value of μ_d corresponds to weight loss (on average). If differences had been taken the other way, “After” – “Before,” then we would have $H_1 : \mu_d < 0$ (lbs.) and we would conduct a left-tailed test.

Test statistic

The methods of this Lesson apply because:

- We are conducting a hypothesis test for a population mean difference between matched pairs.
- We are assuming that the population SD of differences σ_d is unknown.
- We are assuming that the population of differences is approximately normally distributed, so the CLT applies.

We use the t test statistic:

$$t = \frac{\bar{d} - \mu_d^0 \text{ under } H_0}{s_d / \sqrt{n}}$$

$$= \frac{2.0}{3.0} \div \frac{3.0}{\sqrt{3}}$$

$$\approx 1.155$$

Critical Value (CV) and Critical Region (CR); this is a right-tailed test.

We need to use the t distribution on $n - 1 = 3 - 1 = 2$ degrees of freedom. $\alpha = 0.05$.
Decision

The test statistic value is not in the critical region (CR), so we do not reject H_0.

Conclusion

There is insufficient evidence for (in support of) the claim that participants in the program lose weight on average.

PART B: COMPARING MEANS FROM INDEPENDENT SAMPLES

Here, we compare the means for two independent populations.

- The data from the two populations (and the two samples we draw from them) are not paired off as in Part A.
- In fact, the two sample sizes can be different.

For example, we could have:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Population means</td>
<td>μ_1</td>
<td>μ_2</td>
</tr>
<tr>
<td>(unknown)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population standard deviations</td>
<td>σ_1</td>
<td>σ_2</td>
</tr>
<tr>
<td>(unknown)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample sizes</td>
<td>n_1</td>
<td>n_2</td>
</tr>
<tr>
<td>(from Population 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample standard deviations</td>
<td>s_1</td>
<td>s_2</td>
</tr>
<tr>
<td>(from Population 2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In a medical study:

- Population 1 could be the control (placebo) group, and
- Population 2 could be the treatment (drug) group.
Central Limit Theorem (CLT) Assumptions:

We require:

- \(n_1 > 30 \) and \(n_2 > 30 \), or
- the populations are approximately normally distributed.

Setup:

The null hypothesis is written as \(H_0 : \mu_1 = \mu_2 \).

Test statistic

The “two sample \(t \)” test statistic formula is:

\[
t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \quad 0 \text{ under } H_0,
\]

where \# df = (smaller of \(n_1 \) and \(n_2 \)) – 1.

Note 1: If the population variances \(\sigma_1^2 \) and \(\sigma_2^2 \) are known, then use the \(z \) test statistic formula that uses them instead of \(s_1^2 \) and \(s_2^2 \):

\[
z = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \quad 0 \text{ under } H_0.
\]
Note 2: If we assume that the population variances are equal \(\sigma_1^2 = \sigma_2^2 \), then some people use a pooled sample variance \(s_p^2 \) that estimates that common variance, though some statisticians warn against this. \(s_p^2 \) is a weighted average of \(s_1^2 \) and \(s_2^2 \); the larger of the two samples has more of an impact on the value of \(s_p^2 \).

The revised test statistic formula is then:

\[
t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}}
\]

where \(s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{(n_1 - 1) + (n_2 - 1)} \), or \(s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} \)

\# df = n_1 + n_2 - 2 .

Note: This higher \# df corresponds to a \(t \) distribution that looks more like a \(z \) distribution; the SD for the \(t \) distribution is lower now than before. It is generally “easier” to reject \(H_0 \) now, and we have a more “powerful” test.
PART C: COMPARING PROPORTIONS FROM INDEPENDENT SAMPLES

Here, we compare proportions for two independent populations.

<table>
<thead>
<tr>
<th>Population</th>
<th>Population 1</th>
<th>Population 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population proportions (unknown)</td>
<td>p_1</td>
<td>p_2</td>
</tr>
<tr>
<td>Sample 1 (from Population 1)</td>
<td>x_1</td>
<td>x_2</td>
</tr>
<tr>
<td>Sample 2 (from Population 2)</td>
<td>n_1</td>
<td>n_2</td>
</tr>
<tr>
<td>Sample proportions</td>
<td>$\hat{p}_1 = \frac{x_1}{n_1}$</td>
<td>$\hat{p}_2 = \frac{x_2}{n_2}$</td>
</tr>
<tr>
<td>Required</td>
<td>$x_1 \left(\text{or } n_1 \hat{p}_1 \right) \geq 5$</td>
<td>$x_2 \left(\text{or } n_2 \hat{p}_2 \right) \geq 5$</td>
</tr>
</tbody>
</table>

Setup:

The null hypothesis is written as $H_0: p_1 = p_2$.

Test statistic

The z test statistic formula is:

$$z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{pq}{n_1} + \frac{pq}{n_2}}} \sim N(0, 1),$$

where $- p = \frac{x_1 + x_2}{n_1 + n_2}$, and $q = 1 - p$.

\hat{p} is called the pooled sample proportion. Under H_0, the two population proportions are equal, and \hat{p} is our point estimate for this common population proportion. It equals the total number of successes from both samples divided by the total number of trials from both samples.
PART D: COMPARING STANDARD DEVIATIONS OR VARIANCES FROM INDEPENDENT SAMPLES FROM NORMAL POPULATIONS

“Population 1” corresponds to the sample with the larger sample variance, denoted by \(s_1^2 \). The population variance is denoted by \(\sigma_1^2 \).

“Population 2” corresponds to the sample with the smaller sample variance, denoted by \(s_2^2 \). The population variance is denoted by \(\sigma_2^2 \).

Setup:

The null hypothesis is written as \(H_0 : \sigma_1 = \sigma_2 \), or \(H_0 : \sigma_1^2 = \sigma_2^2 \).

Test statistic

The \(F \) test statistic formula is given by:

\[
F = \frac{s_1^2}{s_2^2}, \quad \text{where } s_1^2 \text{ is the larger of the two sample variances.}
\]

In order to use the \(F \) distribution table, we require two numbers of degrees of freedom:

- The \# df for the numerator, denoted by \# df\(_1\), is given by \(n_1 - 1 \), where \(n_1 \) is the sample size for the sample with the larger variance.

- The \# df for the denominator, denoted by \# df\(_2\), is given by \(n_2 - 1 \), where \(n_2 \) is the sample size for the sample with the smaller variance.
Setup and Critical Region (CR):

If we agree that “Population 1” corresponds to the sample with the larger sample variance, then it would not make sense to conduct a left-tailed test; we would not use $H_1 : \sigma_1 < \sigma_2$, or $H_1 : \sigma_1^2 < \sigma_2^2$.

- For all practical purposes, we can act as though we have a right-tailed test with only one critical value.

- If the original test were a two-tailed test, with $H_1 : \sigma_1 \neq \sigma_2$, or $H_1 : \sigma_1^2 \neq \sigma_2^2$, then the right tail of the critical region corresponds to a probability (or area) of $\alpha / 2$.

- If the original test were a right-tailed test, with $H_1 : \sigma_1 > \sigma_2$, or $H_1 : \sigma_1^2 > \sigma_2^2$, then the right-tailed critical region corresponds to a probability (or area) of α.